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Global terrestrial  models currently  predict that the Amazon rainforest will  continue to 35 

act as a carbon sink in the future primarily  due to the rising atmospheric carbon dioxide 36 

(CO2) concentration, effectively enhancing its resilience and slowing the pace of climate 37 

change. Soil phosphorus impoverishment in parts of the Amazon basin limits  biomass 38 

growth, but the role of phosphorus availability  in limiting  its future carbon uptake has 39 

not been considered in global model ensembles, e.g., during the Coupled Model 40 

Intercomparison Project for  the 5th Assessment Report of the United Nations 41 

Intergovernmental Panel on Climate Change. Here, we simulate a planned free-air  CO2 42 

enrichment experiment in the Amazon with  an ensemble of 14 terrestrial  ecosystem 43 

models. We show that phosphorus feedbacks reduce the CO2-induced biomass carbon 44 

sink to 79 ± 63 g C m-2 yr -1 over 15 years, a reduction of ~50% compared to estimates from 45 

carbon and carbon-nitrogen models. Our results suggest that the regionôs resilience to 46 

climate change may be much smaller than previously assumed. Variation  in the biomass 47 

C response among the phosphorus-enabled models is considerable, ranging from 5 to 140 48 

g C m-2 yr -1, due to contrasting assumptions relating to the flexibility  in plant phosphorus 49 

use and acquisition strategies. The model ensemble involuntarily  represents diverse plant 50 

functional strategies and generates a series of testable hypotheses. Experimental design 51 

need to be targeted to reduce the uncertainties around the phosphorus feedback on the 52 

CO2 fertilization  effect.  53 

The intact Amazon rainforest acts as a substantial carbon (C) sink, completely offsetting carbon 54 

dioxide (CO2) emissions from fossil fuel combustion and land use change in the Amazon 55 

region1,2. Increasing atmospheric CO2 concentrations from anthropogenic activity may be the 56 

primary driving force for the current Amazon net carbon sink1,3, and global models assume that 57 

this CO2 fertilization effect will  continue to provide this globally significant ecosystem service 58 

into the future4ï6. The stimulatory effect of elevated carbon dioxide (eCO2) on photosynthesis 59 



and tree growth has been observed experimentally in greenhouses and in the field in open top 60 

chamber and free-air CO2 enrichment (FACE) experiments. To date, whole-ecosystem-scale 61 

experiments (i.e., FACE) have mainly been conducted in the temperate zone and never in the 62 

tropics7,8. In these experiments, the eCO2-induced increase in C uptake is generally low when 63 

other factors, such as soil nitrogen (N), are limiting9,10.  64 

Over large parts of the Amazon and the tropics worldwide, phosphorus (P), not N, is assumed 65 

to be the key limiting nutrient, as most P has been lost or occluded from plant uptake during 66 

millions of years of soil pedogenesis11,12. Forests growing on these highly weathered old soils 67 

may nonetheless be highly productive due to the evolution of multiple strategies for P 68 

acquisition and use, enabling tight cycling of P between plants and soils13,14. Despite this 69 

knowledge, quantifying the control of P on plant physiology, growth, and plant-soil interactions 70 

in global models, and hence its role in the forestsô response to eCO2, remains challenging15. 71 

This challenge is exacerbated by the scarcity of observations and distinctive species responses 72 

in hyperdiverse tropical forests16.  73 

Here, we study the potential interactions between eCO2 and nutrient (N and P) feedbacks in a 74 

mature Amazonian rainforest by simulating the planned AmazonFACE experiment (+200 ppm; 75 

http://amazon-face.org/) with an ensemble of ecosystem models (n = 14, Extended Data Table 76 

3), including three C, five carbon-nitrogen (CN), and six carbon-nitrogen-phosphorus (CNP) 77 

models17ï22. The AmazonFACE experiment is located in a well-studied, highly productive 78 

tropical forest in Central Amazonia23,24, growing on a strongly weathered terra firme Ferralsol. 79 

This ecosystem represents the low end of the plant-available P spectrum in the Amazon, 80 

consistent with ~32% of the Amazon rainforestôs cover fraction25. In situ measurements were 81 

used to parameterise the models and to evaluate simulated ambient conditions (Extended Data 82 

Table 1, 2). Our aim was to generate a priori  model-based hypotheses to highlight the state-of-83 

the-knowledge and guide measurement strategies for AmazonFACE and other ecosystem 84 



manipulation experiments to gain crucial process understanding of P control on the CO2 85 

fertilization effect. 86 

Simulated eCO2 (+200 ppm) had a positive effect on plant biomass C across all models but was 87 

weakest in the CNP models (Fig. 1a). The eCO2 conditions induced average biomass C gains 88 

of 163 ± 65, 145 ± 83, and 79 ± 63 g C m-2 yr-1 after 15 years in the C, CN and CNP models, 89 

respectively (Fig. 1a). Limitations by P thus reduced the predicted biomass C sink by 52% and 90 

46% compared to that in the C and CN models, respectively, with considerable variation across 91 

and within model groups (Extended Data Fig. 1). Plot inventories at the AmazonFACE site 92 

during the 2000s indicate an ambient aboveground biomass sink of 23 g C m2 yr-1, with an 93 

Amazon-wide1 estimate of 64 g C m2 yr-1. The model ensemble represents ambient conditions, 94 

such as productivity and LAI , reasonably well but the set of models does diverge on some 95 

ecosystem characteristics, such as ambient biomass C increases, which range from 5 to 114 g 96 

C m2 yr-1 (see more discussion on ambient model performance in Extended Data Fig. 2).  97 

Gross and net primary productivity (GPP and NPP, respectively) are both stimulated by eCO2 98 

in all models, both initially  (after 1 year of eCO2) and at the end of the simulation. The CNP 99 

models show the strongest decline over the 15-year period from the initial response due to P 100 

limitation (Fig. 1b, c). The final response of NPP to eCO2 was a 35%, 29%, and 9% stimulation 101 

for the C, CN and CNP models, respectively. In general, in the CN and CNP models, nutrient 102 

limitation is defined as nutrient demand being greater than nutrient supply. But models differ 103 

in their assumptions on how nutrient limitation controls productivity and C allocation in 104 

response to eCO2, so that divergent responses on plant carbon use efficiency (CUE = NPP / 105 

GPP) are simulated (Extended Data Table 3). In some CN models, CUE increases because N 106 

limitation is hypothesized to reduce autotrophic respiration (Ra) via lower tissue N content. In 107 

contrast, some CNP models (e.g., CABLE and ELM-ECA) assume a direct downregulation of 108 

growth or growth efficiency (i.e., NPP) but only a small reduction in GPP, and hence the plant 109 



CUE decreases under nutrient limitation (Extended Data Fig. 3). Elevated CO2 induced higher 110 

fine root investments of NPP in some CN and CNP models to aid nutrient acquisition (Fig. 1c; 111 

Extended Data Fig. 4). Predicted changes in allocation with eCO2 cause a general increase in 112 

biomass C turnover across all but one of models, partially offsetting the positive biomass C 113 

response (Extended Data Table 4). Changes in turnover largely control the long-term future 114 

CO2 effect on the biomass C sink26,27.  115 

Plant growth under eCO2 is lowest in CNP models as the low availability of soil labile P restricts 116 

P uptake either immediately (CABLE, ELM-ECA, GDAY) or over time (CABLE-POP, ELM-117 

CTC, ORCHIDEE) (Extended Data Fig. 5). We considered the modelled P limitation on plant 118 

growth to be realistic, as the models and observations agree on soil labile P being very low 119 

(Extended Data Fig. 2). Other observations support the fact that P is extremely critical for plant 120 

productivity, such as high leaf N:P ratios of 37 and high plant P resorption (before litter fall) of 121 

78% (Extended Data Table 1). P limitation consistently reduces the eCO2-induced biomass C 122 

sink, but there is significant variation among CNP models due to contrasting process 123 

representations (Fig. 2; Extended Data Table 3).  124 

P shortages downregulate growth (i.e., NPP) in all models, either directly, via photosynthesis, 125 

or via a combination of both processes. No model considers P effects on Ra. The major 126 

differences among the models relate to how they modify P supply and demand to alleviate plant 127 

P shortages, including either (i) enhancing plant P use efficiency (PUE = NPP / P uptake) or (ii)  128 

upregulating P acquisition mechanisms. PUE may change if  tissue nutrient ratios are flexible, 129 

if  C allocation changes among tissues with different stoichiometry, and/or if  P resorption is 130 

variable. Flexible stoichiometry is considered in all CNP models except ELM-CTC, although 131 

with varying degrees of flexibility,  such that the stoichiometry in CABLE and ORCHIDEE is 132 

effectively fixed (Fig. 2). Greater fine root C allocation in response to plant P stress is 133 



considered in ELM-ECA, GDAY and ORCHIDEE, and P resorption is a fixed fraction of leaf 134 

tissue P in all models (Fig. 2). 135 

In regards to modelled soil P acquisition mechanisms; three of the six models (ELM-ECA, 136 

ELM-CTC, GDAY) consider desorption of P from mineral surfaces (i.e., the secondary or 137 

strongly sorbed P pool), whereas the others assume P in those pools to be unavailable to plants. 138 

All  the models include biochemical mineralization of organic P via phosphatase, but only three 139 

(ELM-ECA, ELM-CTC and ORCHIDEE) include the functionality to increase P acquisition 140 

via this mechanism under plant P stress (Fig. 2; Extended Data Table 3). Litter and soil 141 

stoichiometry are considered with varying degrees of flexibility.  Soil labile P limits microbial 142 

decomposition rates of litter and soil, so that decomposition is reduced when immobilization 143 

demands for P exceed soil labile P availability (Fig. 2; Extended Data Table 3).  144 

Diverging depictions of plant P use and acquisition among the CNP models cause predictions 145 

of the eCO2-induced biomass C sink to range from 5 g C m-2 yr-1 in CABLE to 140 g C m-2 yr-146 

1 in ORCHIDEE (Fig. 3a; Extended Data Fig. 1). Greater plant PUE occurred in four of the 147 

models, GDAY, ELM-ECA, CABLE-POP, and ORCHIDEE, for which shifts in tissue C:N and 148 

N:P due to eCO2 led to increases in biomass C:P ranging from ~200 to 1600 g C g P-1 (Fig. 3c). 149 

Higher fine root investment with eCO2, at the expense of less ñP-costlyò wood, offset some 150 

increases in PUE in ELM-ECA and GDAY. Although higher fine root allocation was simulated 151 

temporarily in ORCHIDEE (Extended Data Fig. 4), investment in wood increased over the full  152 

simulation period, as was also the case in CABLE-POP (Fig. 3b).  153 

Flexible biomass stoichiometry altered decomposition dynamics and induced progressive P 154 

limitation in response to eCO2, i.e., litter stoichiometry shifted towards lower quality (less N 155 

and P in relation to C), reducing net P mineralization rates from microbial decomposition, 156 

causing P to become increasingly unavailable to plants and accumulating in soil organic matter 157 

(Fig. 3d, e). Consequently, ecosystem P retention increased marginally in some models as P 158 



leaching rates decreased. This plant-soil-microbial feedback slowed the cycling of P in the 159 

ecosystem and exacerbated the initial P limitation (see Ref. 28 for a similar feedback during 160 

pedogenesis).  161 

Enhanced plant P acquisition under eCO2 effectively alleviated P limitation in two CNP models 162 

(ELM-CTC and ELM-ECA). In both, eCO2 increased the liberation of P from the secondary 163 

pool, as higher plant P demand and uptake diminished the labile P pool, in turn causing higher 164 

desorption rates. P desorption is thus only indirectly, and not mechanistically, enhanced by 165 

plants in these models. Biochemical mineralization of P under eCO2 responded positively in 166 

both of the models, but added only notably to additional P acquisition in ELM-CTC (Fig. 3e). 167 

Although three CNP models simulated higher fine root investments (ELM-ECA, GDAY, and 168 

ORCHIDEE), the actual P uptake return per fine root increment was marginal or came only into 169 

effect in the long-term (Extended Data Fig. 6).  170 

In summary, the model ensemble encapsulates a range of plausible hypotheses and represents 171 

a potential range of biomass C responses to eCO2 under low soil P availability. At the one end, 172 

CABLE assumes no plant-enabled mechanisms to acquire more P and a limited capacity for 173 

plants to use P more efficiently, resulting in effectively zero biomass C gain with eCO2. The 174 

remaining models predicted some biomass C gain with eCO2. Flexible stoichiometry was the 175 

key mechanistic response to eCO2 in four of these models. ELM-CTC had no change in 176 

stoichiometry, but nonetheless predicted an increase in biomass C gain under eCO2 based on an 177 

increase in plant P acquisition because of enhanced P mineralization and desorption. 178 

Our results also indicate the control of N availability on modelled plant growth. The CN models 179 

simulate increased nitrogen use efficiency (NUE) and biomass C:N ratios, as N uptake was not 180 

sufficient under eCO2 (Extended Data Fig. 5). Direct N limitation of plant growth is, however, 181 

not expected, as observations document ample N cycling in the system, e.g., high leaf N 182 

contents, indicative ŭ15N values, high rates of N oxide emissions, and low N retention29,30. Plant 183 



N availability may be underestimated in the models, since the plant-available mineral N supply 184 

was <7 g N m-2 across all models, as opposed to 17.5 g N m-2 observed in the top 10 cm only 185 

(Extended Data Fig. 2). These results highlight an important gap in our knowledge related to 186 

the dynamics of N availability, and its potential interaction with P dynamics. Future 187 

experiments should help reduce the uncertainty surrounding N effects on P limitation, in 188 

particular for regions predominantly or co-limited by N. 189 

Divergences in the simulated eCO2 response lead us to the following testable hypotheses: 190 

H1. Low soil P availability will  strongly constrain future plant biomass growth response to 191 

eCO2 either by downregulating photosynthesis or limiting plant growth directly, or a 192 

combination thereof.  193 

H2. Despite the limited soil P supply, plasticity in vegetation stoichiometry and allocation 194 

patterns will  allow for some biomass growth under eCO2. 195 

H3. Plants will  increase investments in P acquisition to increase P supply and allow biomass 196 

growth under eCO2 either via greater P interception through fine root production or via greater 197 

P liberation from P desorption or biochemical mineralization of P.  198 

These process- and model-based hypotheses deepen a previously carried out accounting 199 

analysis of potential N and P limitation31. Furthermore, we add to a model intercomparison 200 

carried out in advance of the EucFACE experiment32 by extending the range of plant P 201 

feedbacks considered across CNP models. This work highlighted H1: two stoichiometrically 202 

constrained CNP models predicted that strong P limitation will  curtail the growth response to 203 

eCO2 in subtropical Australia. Consistent with this hypothesis, aboveground growth has not 204 

increased with eCO2 in that experiment over the initial years33. This finding underlines that 205 

monitoring efforts need to place a strong(er) focus on belowground carbon allocation and soil 206 

nutrient dynamics. Additionally, the model ensemble does not yet consider the P effect on Ra 207 



and respiration under different degrees of nutrient limitation need further monitoring during 208 

experiments to further elucidate P effects on the plant C budget and address H1.   209 

Nutrient fertilization experiments support H2, as plasticity in leaf stoichiometry at the 210 

individual level, along with plasticity in P resorption efficiency, was observed34. Across the 211 

Amazon, leaf nutrient assessments indicate a leaf N:P range of 13 to 42 (n = 64) (Ref. 30), which 212 

place our site, with a community mean ratio of 37, at the high end. GDAY thus predicted the 213 

most plausible increase in the leaf N:P ratio from 34 to 38 (Extended Data Fig. 7). CABLE-214 

POP and ELM-ECA predicted strong increases in the leaf N:P ratio with eCO2 but started off 215 

with much lower initial values. The degree to which plasticity in stoichiometry and resorption 216 

can aid plant PUE in highly P-limited sites that are already at the end of the observed spectrum 217 

remains to be seen (H2). Monitoring plant tissue and fresh litter nutrient content in CO2 and 218 

nutrient fertilization experiments will  give an indication of the plasticity of these plant use 219 

mechanisms in response to eCO2.  220 

Based on previous observations10, a number of models assume increased fine root investment, 221 

as well as higher biochemical P mineralization and P desorption from mineral surfaces, under 222 

eCO2-induced nutrient limitation (H3). The effect of increased fine root biomass on nutrient 223 

uptake was limited in our simulations and ambient fine root allocation fractions were highly 224 

variable among the models, ranging from 5-30% of NPP (Extended Data Fig. 4, 6). Both these 225 

modelled results highlight model deficiencies in belowground processes35. There is evidence 226 

that phosphatase activity in litter and soil and the presence of low-molecular-weight acids used 227 

to liberate P from organic matter or from mineral surfaces increase with plant P demand36. This 228 

was predicted by ELM-CTC in our simulations, which also showed Amazon-wide that ñ[with]  229 

enhanced phosphatase production, productivity in the highly P-limited areas can be sustained 230 

under elevated CO2 conditions"37. Plants invest in P liberation and acquisition, but if  these 231 

mechanisms can be upregulated under eCO2 and over what time frame this may occur remain 232 



open questions. Quantification of such fluxes is lacking, as are estimates of the associated plant 233 

C costs to acquire P via these and other mechanisms, such as mycorrhizal symbiosis14,38. The P 234 

gain and C cost for P acquisition mechanisms, as well as the associated plant-soil-microbial 235 

interactions, need to be assessed by analyses of soil, microbial and root nutrition, and via novel 236 

techniques investigating enzyme and labile C dynamics. Monitoring of belowground fine root 237 

dynamics needs to include fine root activity in surface litter, a common phenomenon in P-238 

impoverished ecosystems in the Amazon, not yet quantified nor considered in models.  239 

Previous model projections suggest a sustained fertilization effect of CO2 on the Amazon C 240 

sink but have not considered feedbacks from low soil P availability4,5. Our study demonstrates 241 

that, based on the current generation of CNP models, the omission of P feedbacks is highly 242 

likely to cause an overestimation of the Amazon rainforestôs capacity to sequester atmospheric 243 

CO2. Considering P limitation on the CO2 fertilization effect in future predictions may indicate 244 

that the forest is less resilient to higher temperatures and changing rainfall patterns than 245 

previously thought4,39. Periods of water deficit may contribute to the eCO2 fertilization effect 246 

on productivity due to its water saving effect32. Our study site experienced years with 247 

significantly less than average precipitation, e.g. in 2000 and 2009, however, in our simulations 248 

this added marginally to the modelled CO2 effect (Extended Data Figure 8 and 9). Models are 249 

not yet very apt to simulate water deficits and their consequences on plant growth and mortality 250 

in general, and even more so when precipitation totals are that high40. Interactions of water and 251 

P availability and their consequences on the CO2 fertilization effect remain uncertain and need 252 

urgent clarification41. 253 

Although P is li kely to reduce the biomass C sink response to CO2 in regions with low plant-254 

available P supply, our results suggest that plasticity in plant P use and plant P acquisition 255 

mechanisms, may enable CO2 fertilization of biomass growth. The model ensemble may be 256 

interpreted as involuntarily representing a range of possible tropical plant functional strategies 257 



and growth responses to low phosphorus availability. Responses to eCO2 are expected to be 258 

species-specific, as were plant growth responses to low P supplies in another tropical region16. 259 

The ecosystem-scale response to P limitation under eCO2 will  thus depend on the relative 260 

contributions of the various P acquisition and P use strategies across individuals, their 261 

interactions and to what extent these processes can be upregulated under eCO2. All  of which 262 

ultimately need to be described and represented in a single model framework in order to 263 

accurately predict the Amazon rainforestôs response to future climate change.  264 

AmazonFACE has the unique opportunity to experimentally address these key areas of 265 

uncertainty, not only by integrating the proposed measurements across seasons and at the 266 

ecosystem scale but also by assessing species-specific responses to eCO2 in relation to trait 267 

expression. Amazon-wide expression of plant functional strategies may then be inferred by 268 

applying the mechanistic interplay between trait expression and edaphic conditions. The key to 269 

predicting the future of the worldôs largest tropical forest under eCO2 thus lies in obtaining 270 

experimental data on, and subsequently modelling, different plant P acquisition and use 271 

strategies, as well as their interactions in a competing plant community.  272 
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 390 

Figure 1: The predicted  effect  of eCO2 on biomass C, productivity  and biomass 391 

compartments , averaged over C (grey), CN (blue) and CNP (green) model groups. a, The 392 

final absolute response of biomass growth, calculated as the mean annual response over the 15 393 

years of eCO2 per model group in g C mϺ2 yrϺ1. b, Initial relative responses of productivity 394 

(GPP and NPP), and CUE (=NPP/GPP) in %, calculated as the mean response in the first year. 395 

c, Final relative responses of productivity and CUE, as well as total leaf, fine root and wood 396 

C, calculated as the mean response after 15 years (mean of 13th to 17th year), all in %. 397 

Responses to eCO2 are the differences between the elevated and ambient model run, shown as 398 

mean and standard deviation per model group, individual model outputs are shown in 399 

Extended Data Figure 1 and 3. 400 
Control of phosphorus feedbacks on the biomass C response to eCO2  401 

 402 



Figure 2: Strength  of phosphorus  feedbacks in  controlling  the biomass C response 403 

to eCO2 for  the six CNP models. Ecosystem processes are highlighted that depend (or not 404 

depend) on the P cycle, for which classes (none, intermediate, high) indicate the degree to 405 

which the considered P feedback causes a response of biomass C to eCO2 in our simulations. P 406 

limitation causes strong or intermediate downregulation of photosynthesis with eCO2 across 407 

all models. Maintenance respiration, leaf turnover and P resorption are not responsive to P 408 

feedbacks in any of the models. Leaf N:P responds to eCO2 in most models, but is fixed in 409 

ELM-CTC, narrowly bound in CABLE, and at its maximum in ORCHIDEE. P limitation 410 

causes direct downregulation of biomass growth in CABLE, CABLE-POP, ELM-ECA and 411 

ORCHIDEE. Allocation shifts towards roots to alleviate P limitation is considered in GDAY, 412 

ELM-ECA and ORCHIDEE. Desorption of P from mineral surfaces is only considered in 413 

ELM-ECA and ELM-CTC, and biochemical P mineralization is considered in many models, 414 

but only effectively responsive in ELM-CTC. 415 

 416 
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 426 

Figure 3: Key responses of biomass C gain, stoichiometry,  allocation,  and P 427 

dynamics  to eCO2 for  the CNP models , contrasted are positive (blue) from negative (red) 428 

responses. a, Mean annual change in standing leaf, fine root and wood C over 15 years, 429 

increasing across models from left to right in g C mϺ2 yrϺ1. b, The mean change in C allocation 430 

for fine roots and wood in %. c, Mean change in tissue stoichiometry in absolute terms in g C 431 

g PϺ1 and change in P use efficiency over 15 years in g C g PϺ1 yrϺ1. d, Mean change in 432 



ecosystem P input and output (leaching) fluxes in g P mϺ2 yrϺ1 and mean change in final P 433 

stock in biomass, organic soil, mineral soil and total ecosystem in g P mϺ2. e, Mean change in 434 

plant P acquisition processes, including change in net P mineralization, biochemical P 435 

mineralization and P uptake in g P mϺ2 yrϺ1 and secondary and labile P pools in g P mϺ2. For 436 

both, d and e, P flux changes are differences of cumulative fluxes after 15 years and P pool 437 

changes are differences in pools after 15 years. 438 

CO2 fertilization  of the Amazon forest  hinges on plant  phosphorus  use and 439 

acquisition  440 

We present here supplementary information to the main text of the study òCO2 fertilization 441 

of the Amazon forest hinges on plant phosphorus use and acquisitionò by Fleischer et al., 442 

submitted to Nature Geoscience. 443 

The individual modelsô biomass C responses to eCO2 are shown in Extended Data 444 

Figure  1, where the absolute and relative effect of eCO2 on cumulative biomass C is included. 445 

The variation in their predictions among and within the model groups becomes apparent. 446 

While CNP models (in green) generally predict lower biomass C gain with eCO2 compared to 447 

Conly (grey) and CN models (blue), some CNP models exceed predictions by the other model 448 

groups. Assumptions on how plant P use and P acquisition is dealt with in the models cause 449 

these diverging responses. 450 

The individual modelsô performance in representing ambient conditions of key ecosystem 451 

variables are shown in Extended Data Figure  2. Modelsô generally represented ambient 452 

conditions well at the study site, such as GPP, NPP and LAI.  GPP was lower than observed in 453 

some models, while LAI  was either over- or underestimated by some models. Considering the 454 

uncertainties surrounding field observations, we judged these deviations as acceptable. For 455 

biomass C, models diverged noticeably, which is controlled by productivity and turnover 456 

dynamics simultaneously. While we have relatively reliable measurements of aboveground 457 

biomass C, belowground components remain more uncertain and are not considered in the 458 

observational-based estimate here. Models on the other hand consider total biomass C, which 459 

adds to the differences among models and observations. Ambient annual biomass C increment 460 

varied strongly across the models, for which we included the Amazon-wide estimate from 461 

Brienen et al. 2015 as an observation (see main text for complete reference). The estimate 462 

from our site is lower (see main text), but associated to higher uncertainties due to few 463 

censuses. For both, biomass C and biomass C increment, there was no clear pattern between 464 

the model groups, so that we judge that these differences did not control the overall 465 

conclusions of our study. 466 

The models simulated less than 1.1 g labile P mϺ2 to 4 m depth in the ambient run (with the 467 

exception of ELM-CTC), which is the plant available soil P. Observations indicate 1.6 g resin 468 

P mϺ2 to 30 cm depth. Resin P is considered to be directly plant-available, representing the 469 

modelled soil labile P pool, although direct comparisons are hampered as P fractionations are 470 

operationally defined. Observations are thus slightly higher but both modelled and observed 471 

values on soil labile P are considered to be very low and the resulting modelled P limitation to 472 

be realistic. 473 

The individuals modelsô simulation results on the relative eCO2 effect on primary 474 

productivity (GPP, NPP), plant tissue C stocks and plant CUE are shown in Extended Data 475 

Figure  3. The modelsô plant C allocation fractions and the respective relative effect of eCO2 476 

thereon is shown in Extended Data Figure  4. The individuals modelsô simulation results on 477 



the relative eCO2 effect on N and P uptake, NUE and PUE, as well as plant tissue 478 

stoichiometry is shown in Extended Data Figure  5. 479 

The relationship between eCO2 induced P uptake, fine root allocation, and the respective 480 

return of P uptake per unit fine root allocation for three CNP models are shown in Extended 481 

Data Figure  6. The three models (ELM-ECA, GDAY, and ORCHIDEE) simulated a higher 482 

fine root investment with eCO2, but a heightened relative return of P was only achieved 483 

temporarily, after some time, or not at all. The absolute effect of eCO2 on NUE, PUE and 484 

stoichiometry for the individual models is shown in Extended Data Figure  7. Both CN and 485 

CNP versions of GDAY and CABLE-POP were included in the model ensemble, allowing the 486 

N and P effect alone to be inferred. Their respective CN versions, and some other CN models, 487 

indicated that N limitation occurred, as leaf and biomass C:N were predicted to increase under 488 

eCO2 (Extended Data Fig. 7). The inclusion of both CN and CNP versions for GDAY and 489 

CABLE-POP supported the fact that P cycle limitations reduced the eCO2 induced biomass C 490 

sink, as the main comparison across the C, CN and CNP model group indicated. 491 

Model driving data of precipitation are plotted as annual precipitation over the course of 492 

the 15 year study period in Extended Data Figure  8. Precipitation (and other climate) data 493 

was derived from the K34 fluxtower, which experienced two years of strong precipitation 494 

deficit during the study period, 2000 and 2009. The relative eCO2 response of GPP and NPP is 495 

plotted against annual precipitation in the Extended Data Figure  9 to test for potential 496 

interactions of eCO2 and droughts in the study region. While some models show a significant 497 

effect of precipitation on the strength of the eCO2 effect on GPP, the slope of the line is very 498 

shallow, so that we can conclude that variations in water availability contributed little to the 499 

simulated eCO2 effect in our study. 500 

 501 

Extended Data Figure  1: Cumulative  effect  of eCO2 on biomass C per  model.  a, 502 

Absolute cumulative effect on biomass C in kg C mϺ2, and b, relative cumulative effect on 503 
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biomass C in %. See legend for individual model names. C-only models are in shades of grey, 504 

CN models are depicted in shades of blue and CNP models are depicted in shades of green. 505 

 506 

Extended Data Figure  2: Ambient  model  conditions  compared  to in situ 507 

observations.  Individual modelsô values are mean conditions over the ambient simulation. 508 

Horizontal dotted lines indicate observations when available (see sources in Extended Data 509 

Table 1). Measurements marked with a ? were provided to modelers beforehand. C fluxes 510 

(GPP, NPP) are in kg C mϺ2 yrϺ1, biomass C is aboveground only in kg C mϺ2, and biomass C 511 

increment in g C mϺ2 yrϺ1. The observational estimate for biomass C increment is based on the 512 

Amazon-wide estimate from Brienen et al. 2015 (64 g C mϺ2 yrϺ1 for the 2000s, C.I. 45-78 g C 513 

mϺ2 yrϺ1). CUE is calculated as the ratio of NPP per GPP. LAI  is in m2/m2. Leaf and soil  514 

stoichiometry are ratios of C, N and P content in dry matter, respectively. Leaf stoichiometry 515 

was parameterised only in some models (see Extended Data Table 2). Fluxes of net N and P 516 

mineralisation are in g N/P mϺ2 yrϺ1. Soil mineral N pool and labile P pool (both considered 517 

plant-available), as well as soil organic N and P pool, are in g N/P mϺ2. Observations for soil 518 

nitrogen content are based on top 10 cm, and for labile P on top 30cm. Modeled values are 519 

based on a soil depth of 4m. See legend for individual model names. C-only models are in 520 

shades of grey, CN models are depicted in shades of blue and CNP models are depicted in 521 

shades of green. 522 



 523 

Extended Data Figure  3: Relative  effect  of eCO2 on GPP, NPP, leaf C, wood  C, fine  524 

root  C and plant  CUE. Shown are initial effects (1st year) on top and final effect after 15 525 

years of eCO2 (mean of 13th to 17th year), both in %. See legend for individual model names. 526 

C-only models are in shades of grey, CN models are depicted in shades of blue and CNP 527 

models are depicted in shades of green. 528 

 529 

Extended Data Figure  4: Ambient  C allocation  to plant  tissues and the effect  of eCO2 530 

thereon.  Mean and standard deviation of ambient C allocation to leaf, wood, coarse and fine 531 


