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predict the extreme mean total water level climate  13 

• Beach slope is shown to be important to the contribution of waves to mean total water 14 

levels 15 
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Abstract 20 

Empirical equations for wave breaking and wave setup are compared with archived shoreline 21 

wave setup measurements to investigate the contribution of wind-waves to extreme Mean 22 

Total Water Levels (MTWL, the mean height of the shoreline), for natural beaches exposed 23 

to open ocean wind-waves. A broad range of formulations are compared through linear 24 

regression and quantile regression analysis of the highest measured values. Shoreline wave 25 

setup equations are selected based on the availability of local beach slope data and the ability 26 

of the quantile regression to show a good representation of the highest measured levels. Wave 27 

parameters from an existing spectral wave hindcast are used as input to the selected equations 28 

and are combined with a storm-tide time series to quantify the relative contribution of 29 

shoreline wave setup to the extreme MTWL climate along Australian beaches. A multi-pass 30 

analysis is provided to understand the ability to capture the shoreline wave setup estimates 31 

with and without considering beach slope. The national scale analysis which does not include 32 

beach slope indicates there are multiple contributing factors to MTWL. Examples are 33 

provided at two locations of differing local beach slope to show the importance of including 34 

local beach slope in determining the contribution of waves to MTWL. A tool is in 35 

development for further investigation of wave setup for Australian beaches.  36 

 37 
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Plain Language Summary 38 

Understanding how high ocean water levels can reach up the coast is important for designing 39 

coastal protection from coastal inundation and erosion. This is particularly important as 40 

climate change affects wind and weather conditions and sea-level rise with the subsequent 41 

modification to the occurrence of the largest storm-driven water levels. While the height of 42 

storm-driven water levels are well understood for protected harbors and estuaries, new 43 

research is providing estimates of how high water levels can reach for coastlines exposed to 44 

dangerous wave/surf conditions. This study uses mathematical model simulations spanning 45 

~30 years of historical water levels and ocean waves. Statistical analysis is performed to 46 

determine how high the largest storm events will likely reach on natural sandy beaches 47 

directly exposed to large wave/surf conditions. The study demonstrates that estimates are 48 

very sensitive to local beach characteristics. The paper presents the science behind a tool 49 

(which is in development) to allow further investigation of the contribution of waves/surf to 50 

the highest water levels for individual beaches.  51 

 52 

1. Introduction 53 

Understanding the climate of extreme water levels is important for coastal protection, 54 

particularly as climate change affects wind and weather conditions and sea-level rise, 55 

subsequently modifying extreme water levels (McInnes et al., 2016; Vitousek et al., 2017; 56 

Vousdoukas et al., 2018; Wong et al., 2014). The contributing processes to water level 57 

extremes include ocean-basin scale steric and barotropic sea levels, astronomical tide, 58 

atmospheric forced coastal storm surge, wind-wave driven wave setup and wave runup, each 59 

of which can occur in isolation or coincidentally. Wave setup is defined as the increase in the 60 

mean water level across the surf zone due to the presence of waves and can be a major 61 

contributor to inundation for coastlines exposed to large waves (O’Grady & McInnes, 2010). 62 

Wave setup provides the mean contribution of waves to the shoreline water level. Wave 63 

runup provides the further contribution of waves to shoreline water levels by including higher 64 

water levels which are only reached by the highest swash motions up the beach face. In this 65 

manuscript the term Mean Total Water Level (MTWL) is used to indicate the mean height of 66 

shoreline water level with the inclusion of wave setup, juxtaposed to the Total Water Level 67 

(TWL) which has been used to indicate the shoreline height which is exceeded at higher 68 

percentiles (e.g. 2% exceedance percentile or maximum height) of the water level with 69 

inclusion of wave runup (e.g. Serafin et al., 2017).  70 

There is increased interest in the contribution of waves to extreme water levels given recent 71 

storm events, for example the Sydney June 2016 event (Mortlock et al., 2017) and reports on 72 

the compounding effect of sea level rise on wave-driven extreme events (Melet et al., 2018; 73 

Rueda et al., 2017; Vitousek et al., 2017). There is also increasing availability of regional and 74 

global hindcast and reanalysis datasets of the various contributing factors to extreme water 75 

level, and a requirement to provide these data through climate services (Le Cozannet et al., 76 

2017). Accurate predictions of the contribution of waves to MTWL (or TWL) are dependent 77 

on the local beach slope (Nielsen, 1988). The lack of systematic beach-profile measurements 78 

makes it difficult to accurately predict the contribution of waves to MTWL at the global or 79 

national scale (Turner et al., 2016). There are also few observations of the contribution of 80 

waves to MTWL, particularly in Australia, to validate the model prediction of extreme wave 81 

conditions (Hanslow & Nielsen, 1993; Nielsen, 1988).  82 
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Australia has a wide diversity of coastal beaches, including fringing reef coastlines and rocky 83 

platforms, each of which produce a different shoreline wave effect (Buckley et al., 2018; 84 

Merrifield et al., 2014; Power et al., 2018). As first step to identifying the contribution of 85 

waves to extreme water levels, this paper will focus on estimates for natural sandy beaches 86 

directly exposed to open ocean wind-waves only. Estimates will be provided for the entire 87 

coast for continuity in the first pass analysis, which will include cliffed coastlines and 88 

coastlines behind fringing reefs. Therefore, local scale interpretation of the national maps 89 

should consider the nearshore bathymetry and coastal geomorphology. This initial effort to 90 

include waves will also limit the focus on the shoreline wave setup, which is the maximum 91 

value of the wave setup water surface across the surf zone and is measured as the time-92 

averaged height of the shoreline. The analysis of wave runup, measured as higher percentile 93 

shoreline heights, is not presented in detail here to narrow the focus of the study to wave 94 

setup. Wave runup has related processes and empirical equations to shoreline wave setup and 95 

is as important as wave setup to extreme sea level hazards. The remainder of this paper is 96 

organised with a review of previous studies on extreme water levels (Section 2), shoreline 97 

wave setup equations (Section 3) and description of the data and models used in this study 98 

(section 4). Results are presented (Section 5) reanalysing historic field measurements, then 99 

providing national maps of shoreline wave setup and MTWL as a broad scale analysis 100 

followed by examples for Australian beaches. Discussion and conclusions are provided 101 

(Section 6) with the aim of developing a tool to access the return level curves for MTWL for 102 

each Australian Beach. 103 

2. Extreme water level climate 104 

The contributors to extreme water level, (e.g. MTWL or TWL), depend on where the water 105 

level is measured (Figure 1) and the statistical measure of the water level, (e.g. mean or 98th 106 

percentile value). The different terms for the contributors are summarised in Table 1. This 107 

definition of MTWL as used in this paper is along the lines of the TWL but without wave 108 

runup heights at the beach as described in Serafin et al., (2017).  109 
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Figure 1 Diagram showing the location of different  measurements of extreme water level. 

Vertical level abbreviations are described in Table 1. 

 110 

Figure 2 shows the cross-shore beach profile of the contributors to MTWL and TWL. Above 111 

a physical datum, the still water level (SWL) is defined as the time-averaged water level (on 112 

the order of 6 minutes to one hour) due to astronomical tide, atmospheric driven water level 113 

(surge) and steric and barotropic effects. For an open ocean beach, the SWL is assumed to be 114 

horizontal across the surf zone (Figure 2). Wave setup is defined as the increase in the time-115 

averaged (on the order of 15 minutes to one hour) water level due to the presence of waves. 116 

The horizontal wave setup water surface increases shoreward across the surf zone (Figure 2). 117 

The maximum value of wave setup, which occurs at the beach face is defined as the shoreline 118 

wave setup and it corresponds to the MTWL (Table 1). Shoreline wave setup is measured as 119 

the time-averaged swash line height relative to the SWL. It is assigned the term shoreline 120 

wave setup 𝜂̅𝑠, where 𝜂 is the free water surface relative to the SWL, the over-bar denotes the 121 

time-average and the subscript s indicates that it is at the location of the shoreline. 122 

  123 
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Table 1 Description of water level terms. In each column, a bold ‘X’ indicates the important 124 

measured component(s) which differentiates the water level term from the water level terms 125 

in the other columns. See Figure 2 for graphical representation. 126 

Description Mean sea level  Still water level  Mean total water 

level  

Total water level  

Abbreviation MSL SWL MTWL TWL 

Commonly 

Measured by a 

Satellite 

altimeter 

Tide gauge Video camera Video camera 

location  Open ocean Sheltered harbor Beach shoreline Beach shoreline 

Includes:     

-Wave runup    X 

-Wave setup   X x 

-Atmospheric 

surge 

 X x x 

-Astronomical 

tide 

x X x x 

-Barotropic X x x x 

-Steric X x x x 

Typical 

sampling 

statistic 

Interannual 

mean 

6-60 min mean 15-60 min mean 15-60 min 98th 

percentile 

How is the 

important 

component (X) 

resolved? 

Low-pass filter Harmonic tidal 

analysis and 

high-pass 

filtered storm 

surge  

SWL at the tide 

gauge subtracted 

from MTWL 

SWL at the tide 

gauge subtracted 

from TWL 

 127 

Studies have investigated the contribution of waves to TWL at a global and national scale 128 

(Melet et al., 2018; Serafin et al., 2017). In Australia, studies have investigated the extreme 129 

water level climate considering tide and storm surge contributions, using tide gauge 130 

measurements and hindcast simulations that represent the SWL at the coast (Colberg et al., 131 

2019; Haigh, MacPherson, et al., 2014; Haigh, Wijeratne, et al., 2014). In this study a 132 

historical dataset of wave setup is generated from a numerical spectral wave hindcast 133 

(Durrant et al., 2013). Empirical shoreline wave setup equations are then used to estimate the 134 

contribution of wave setup to the extreme MTWL climate along the ocean coast of Australia. 135 

 136 



Confidential manuscript submitted to Journal of Geophysical Research: Oceans 

 

 

6 

 

 

 

Figure 2 Diagram of wave setup in extreme water levels. Blue curved line is the 

instantaneous free water surface wave 𝜂, red dashed curve is the time-averaged wave setup 

and set down water surface 𝜂̅, black dashed line is the still water level (SWL), black dot-

dashed line is the mean sea level (MSL) and black solid line is the beach bathymetric 

profile z. Vertical water level abbreviations (MSL, SWL, MTWL and TWL) are described in 

Table 1. 𝐻𝑏 is the height of the waves at the onset of breaking. 

3. Shoreline wave setup equations for natural sandy beaches 137 

The mathematical theory of wave setup, represented by partial differential equations (PDEs) 138 

for the wave stress gradient (Longuet-Higgins & Stewart, 1964) has been used to predict 139 

wave setup across the surf zone, e.g. by solving the numerical approximations of the PDEs, 140 

as done in the SWAN model (Battjes and Janssen, 1978; Holthuijsen, 2007). The PDE in the 141 

cross-shore direction can be simplified with the generalised assumption that across the surf 142 

zone the ratio of wave height to depth (𝛾, breaking parameter) remains constant and waves 143 

are non-dispersive in the shallow water (wave group speed equals the phase speed). This 144 

simplification results in the horizontal gradient in wave setup being roughly proportional to 145 

the bathymetric gradient (Longuet-Higgins & Stewart, 1964). The PDE of wave setup can 146 

then be simply integrated horizontally across the surf zone to work out the value of wave 147 

setup at the shoreline (Dalrymple & Dean, 1991; Holthuijsen, 2007), 148 

𝜂̅𝑠 = 𝛼𝛾𝐻𝑏 , 1 

where 𝐻𝑏 is the height of the waves at the onset of breaking and 𝛼 is the constant value of 149 

0.31 in Holthuijsen, (2007) and varies with 𝛾 in Dalrymple and Dean, (1991). The challenge 150 

with this equation is that 𝐻𝑏 is difficult to measure in the field, and there is no analytical 151 

equation relating 𝐻𝑏 to deep water wave theory characteristics. Furthermore the assumption 152 

on a constant breaking parameter across the surf zone is questionable (e.g. Apotsos et al., 153 

2008) .  154 

Shoreline wave setup 𝜂̅𝑠 has been measured (as the mean elevation at the shoreline relative to 155 

the SWL) by pressure sensors, resistance wires, photogrammetry (video cameras) and remote 156 

SONAR or LIDAR ping-return range finder sensors (Brodie et al., 2015; Gourlay, 1992; 157 
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Stockdon et al., 2006 and references therein). Accompanying this, regression analysis has 158 

shown relationships between empirical parametrisations and measurements of shoreline wave 159 

setup, wave and beach characteristics. The simplest regression parametrisation relates 𝜂̅𝑠 as 160 

proportional to deep water wave height, which is commonly referred to as the ‘rule of thumb’ 161 

(Guza & Thornton, 1981). More involved empirical relationships have presented a 162 

dependence on the surf similarity or Iribarren number (Bowen et al., 1968; Nielsen, 1988), 163 

which compares the bathymetric (𝛽𝑏 in Figure 2) or beach slope (𝛽𝑓 in Figure 2) to the wave 164 

steepness ratio and has been used to predict breaking type, surging, plunging or spilling 165 

breakers (Iribarren & Nogales, 1949), 166 

𝜉 = 𝛽 (
𝐻

𝐿
)

−𝑛

, 2 

where 𝛽 represents the bathymetric or beach slope, 𝐻 is the wave height and 𝐿 is the wave 167 

length. The exponent 𝑛 is most commonly assigned the value of 0.5, but 0.3 has been used 168 

(Gourlay, 1992). Using Equation 2, regression analysis has shown, 169 

where 𝛼 is the slope parameter of the zero crossing regression analysis. Differences in the 170 

empirical formulation of 𝛾, 𝜉 and 𝜂̅𝑠 throughout the literature arise because the wave 171 

parameters can represent bulk parameters, such as significant wave height (𝐻0), peak period 172 

(𝑇𝑝) measured in the field, or represent individual waves in flume studies to better align with 173 

linear wave theory. The wave parameters can also represent deep water waves or the waves at 174 

the onset of breaking. 175 

We note that the main difference between the mathematical solution to 𝜂̅𝑠 in Equation 1 and 176 

the empirical regression parametrisation in Equation 3 is that the former is formulated on the 177 

basis of the bathymetric slope (𝛽𝑏) across the surf zone , i.e. radiation stress from wave 178 

shoaling (setdown) and depth-induced breaking, and the latter is dependent on beach slope 179 

(𝛽𝑓), i.e. wave swash which is influenced by the asymmetric swash/runup effect on the beach 180 

slope (Gourlay, 1992; Holman & Sallenger, 1985). This is important when considering that 181 

the measured mean shoreline level (shoreline wave setup) is a function of both wave breaking 182 

induced setup across the surf zone, and a component of time-averaged asymmetric swash 183 

effect. Having noted this, numerical coupled wave-hydrodynamic models have been tuned to 184 

match both the empirical models (Equation 3) and measurements and account for the 185 

combined bathymetric depth-induced breaking induced setup and beach swash slope effect (Ji 186 

et al., 2018; Stockdon et al., 2014).  187 

An approach which could be considered to have separated the contribution of bathymetric 188 

depth-induced breaking and beach swash processes, though not explicitly indicated, is the 189 

spectral partitioning analysis of the swash height (Buckley et al., 2018; Stockdon et al., 2006, 190 

2014). The bathymetric depth-induced breaking effect could be largely (but not exactly) 191 

attributed to spectral significant height of frequencies lower than the chosen threshold, e.g. 192 

0.05Hz (infragravity waves) and the beach face swash effect to significant height of 193 

frequencies higher than that threshold (incident waves) considering the studies such as Guza 194 

& Thornton, (1982); Symonds & Bowen, (1984). Here, the data presented in Stockdon et al., 195 

(2006) indicates that the measured significant swash height contributions from the 196 

infragravity partition (bathymetric depth-induced breaking) and incident partition (beach face 197 

swash) are of similar magnitude for the chosen partition frequency (0.05Hz).  198 

𝜂̅𝑠 ∝ 𝛼𝐻𝜉, 3 
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Other studies have added an extra wave setup term to the parameterisation of wave runup to 199 

improve their regression analysis of wave runup, but do not directly attribute this extra 200 

parameter to either the depth-induced breaking or a mean component of the asymmetric 201 

beach face swash effect (Atkinson et al., 2017; Holman, 1986). Nevertheless, from multiple 202 

lines of evidence, regression analysis against measurements and numerical model simulations 203 

has shown the parametrisation of the combined 𝜂̅𝑠 from bathymetric depth-induced breaking 204 

induced setup and beach swash effect to be proportional to the wave height (at breaking or in 205 

deep water) multiplied by the surf similarity parameter (Equation 3). 206 

Few field measurements of shoreline wave setup exist at coastal locations in Australia 207 

(Nielsen, 1988; Nielsen & Hanslow, 1991). In the subsequent sections of this study we test 208 

empirical equations for wave breaking and wave setup (Gourlay, 1992) with setup 209 

measurements using video cameras from beaches in the Northern Hemisphere (Stockdon et 210 

al., 2006) to understand the ability of the different empirical formulations to predict shoreline 211 

wave setup. These equations are then compared to measurements in Australia of swash 212 

transgressions past an array of stakes utilising the assumption that the shoreline follows a 213 

Rayleigh distribution (Nielsen & Hanslow, 1991). Spectral wave hindcast fields (Durrant et 214 

al., 2013) are provided as input to the selected empirical equations and combined with a time 215 

series of regional ocean model system (ROMS) modelled SWL (Colberg et al., 2019) to 216 

resolve the contribution of shoreline wave setup to the extreme MTWL climate at Australian 217 

beaches.  218 

4. Measurements, model data and methods 219 

4.1. Observations 220 

Observations of waves, beach slopes and shoreline wave setup were sourced from the video 221 

camera experiments presented by Stockdon et al., (2006). Deep water wave length is 222 

estimated with the equation, 223 

𝐿0 = 𝑔𝑇0
2/(2𝜋) , 4 

where 𝐿0 is the deep water wave length and 𝑇0 is the deep water peak period.  224 

Additional Australian field data of waves and setup were sourced from Nielsen & Hanslow, 225 

(1991). Here, shoreline wave setup was measured by counting the swash transgression past a 226 

number of stakes. Assuming swash waves follow a Rayleigh distribution, 𝜂̅𝑠 = 0.89𝐿𝑧𝑤𝑚, 227 

where 𝐿𝑧𝑤𝑚 =  𝐶1(𝐻0,𝑟𝑚𝑠𝐿0)0.5, 𝐶1 is the best-fit parameter and 𝐻0,𝑟𝑚𝑠 is the root-mean-228 

squared wave height. By convention, wave heights are assumed to obey the Rayleigh 229 

distribution in deep water, indicating that, 𝐻0/𝐻0,𝑟𝑚𝑠 = √2 (Ji et al., 2018). Here the 𝐿0 was 230 

calculated with Equation 4 with 𝑇0 equal to the deep water significant wave period 𝑇𝑠. The 231 

non-directional Sydney wave-rider buoy measurement for the study period (1988-1990) 232 

indicate 𝐻0/𝐻0,𝑟𝑚𝑠 ≈ √2 and 𝑇𝑝/𝑇𝑠 ≈ 1.2.  233 

Observed tide gauge SWL return levels were sourced from Haigh et al., (2014a). These 234 

values were used for validation of the extreme value distributions fitted to the ROMS 235 

hindcast data.  236 

Beach slope observations were selected from the long term beach profile monitoring on the 237 

New South Wales (NSW) coastline (Turner et al., 2016, http://narrabeen.wrl.unsw.edu.au/). 238 

The mean intertidal beach slope for the five transects was calculated as slope between the 239 

http://narrabeen.wrl.unsw.edu.au/
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linear interpolated zero and 2m water elevations which correspond to the range of the 240 

intertidal zone and is relative to the Australian Height Datum (AHD)(Turner et al., 2016). 241 

4.2. Numerical hindcast data 242 

Time series of SWL from computed storm surge and tide (storm-tide) were sourced for a 243 

string of points around the coastline at 10km intervals from a ROMS model simulations 244 

(Colberg et al., 2019). The ROMS model was run from the start of 1981 to the end of 2013 on 245 

a ~5km resolution regular grid and was forced with hourly ~38km grid resolution Climate 246 

Forecast System Reanalyses (CFSR) atmospheric data. The ROMS hindcast is used in this 247 

study because it uses the same atmospheric reanalysis as the wave model and because of the 248 

availability of end of 21st century climate simulations for future research into the changes in 249 

extreme water level climate. Extreme SWL distributions fitted to a modelled hindcast using 250 

Danish Hydraulic Institute’s (DHI) Mike-21 flexible mesh model were sourced from Haigh et 251 

al., (2014a) at the same string of points around Australia as the ROMS simulations. The 252 

Mike-21 model was run from 1949 to 2009 on a unstructured grid, with a maximum 253 

resolution of ~10km at the coast and forced by 6 hourly ~250km grid resolution National 254 

Center for Environmental Prediction (NCEP) atmospheric data. The Mike-21 distributions 255 

were used to reference the 1-year ROMS SWL to the Australian height datum (AHD), using 256 

the method described in Haigh, Wijeratne, et al., (2014). For each corresponding ROMS 257 

coastal point, the nearest grid point in a depth of at least 20 m was identified in a Wave 258 

Watch three (WWIII) spectral wave hindcast (Durrant et al., 2013) which was run on a ~7km 259 

grid. At these locations, the significant wave height and peak wave period is extracted for the 260 

years 1981 to 2013 inclusive. Empirical wave setup was calculated at all coastal WWIII 261 

points for every output time step. A time series of MTWL is computed by adding the hourly 262 

time series of empirical wave setup 𝜂̅𝑠 to the hourly time series ROMS SWL.  263 

4.3. Extreme value analysis 264 

The annual maximum method (AMM) is used to evaluate extreme MTWL, shoreline wave 265 

setup, and SWL, where the highest value each year is selected to create time series of yearly 266 

annual maximum values. For longer return periods, the annual recurrence interval (𝑅𝐼) can be 267 

written in terms of the probability of exceedance (𝐸𝑃) (Pugh, 1996), 268 

𝑅𝐼(𝐸𝑃) = −1/ log(𝐸𝑃) 5 

This approximation, which is used for plotting in R statistical software package ismev (Coles, 269 

2001), can be used with the Gumbel distribution quantile function (cumulative distribution 270 

function) to predict the water level return interval extreme value distribution (EVD), 271 

𝑧(𝑅𝐼) =  𝜇 − 𝜆 log (
1

𝑅𝐼
), 

6 

where 𝑧 is the water level return level corresponding to either the shoreline wave setup (𝜂̅𝑠), 272 

SWL or MTWL, 𝜇 is the location parameter, and 𝜆 is the scale parameter fitted to the 273 

hindcast AMM values. The Gumbel EVD was preferred over EVDs that include an additional 274 

shape parameter, to avoid including the assumption that the ~30 year dataset is long enough 275 

to also correctly represent this additional parametric term of asymptotic curvature at higher 276 

RI (Arns et al., 2013). R’s ismev package is used to fit Equation 6 to the AMM hindcast data 277 

to identify the maximum likelihood estimates of the 𝜇 and 𝜆 parameters and their covariance 278 

matrix (𝐶𝑂𝑉). The 5 and 95th percentile uncertainty curves are calculated as, 279 

𝑧𝑢(𝑅𝐼) = 𝜇 − 𝜆 log (
1

𝑅𝐼
) ± 1.96𝑠𝑒(𝑅𝐼), 

7 
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where 𝑠𝑒(𝑅𝐼) is the standard error calculated as, 280 

𝑉(𝑅𝐼) = [1, exp (−1/𝑅𝐼)] × 𝐶𝑂𝑉 × [1, exp (−1/𝑅𝐼)]𝑇,  

𝑠𝑒(𝑅𝐼) =  √𝑉, 8 

and 𝑉 is the matrix multiplication of the exceedance probabilities with the covariate matrix 281 

(𝐶𝑂𝑉) from the model fit. The Gumbel parameters in Equation 6 were first calculated from 282 

the AMM of the hourly time series for each coastal point in the ROMS SWL simulations, 283 

then from the hourly time series for the corresponding WWIII point for two shoreline wave 284 

setup (𝜂̅𝑠) equations, and finally from the hourly time series of the ROMS SWL added to 285 

each of the hourly shoreline wave setup equations to create the MTWL time series. The one 286 

year and 100-year RI return levels were then calculated with Equation 6 for the SWL, 287 

shoreline wave setup and MTWL using the corresponding Gumbel parameters. 288 

5. Results 289 

5.1. Validation of empirical equations for shoreline wave setup 290 

In this section an empirical relationship is sought to describe shoreline wave setup from the 291 

list the equations in Table 2 that have been used in regression analyses with empirical 292 

measurements of shoreline wave setup (Stockdon et al., 2006). Some of the equations are 293 

more related to wave breaking than shoreline wave setup (e.g. Van Dorn, 1978). The order of 294 

the equations in the table starts with a single dependence of deep water significant wave 295 

height 𝐻0 then includes beach slope 𝛽𝑓 and the wave steepness (𝐻/𝐿)−𝑛 parameters from 296 

Equation 2. Beach slope in the empirical dataset changes on the time scale of a single tidal 297 

cycle and with seasonal storm climate. Only a mean value of beach slope is available for 298 

some Australian beaches, so the mean beach slope at each location 𝛽̅𝑓 (in the empirical 299 

dataset) is included in the regression analysis. A zero crossing regression is used to fit the 300 

data, with the consideration that a wave with zero height will result in zero wave setup.  301 

The Pearson correlation coefficient, r, is squared to represent the coefficient of determination 302 

and is used to indicate the proportion, or percentage, of variance in the dependant variable 303 

(measured 𝜂̅𝑠) that is predictable from the independent variable(s) (𝐻0, 𝛽𝑓 and 𝐿0). On its 304 

own, the deep water significant wave height rule of thumb equation captures 30% of the 305 

variance of shoreline wave setup (Table 2). Including the wave steepness parameter with 𝐻0 306 

and 𝑛 = −1/2 explains a further 8% of the variance, while the equation with an optimised 307 

regression value of 𝑛 ≈ −1/3 ,similar to Van Dorn (1978), explains a further 12%. Including 308 

the mean location beach slope 𝛽̅𝑓 with 𝐻0 explains a further 12%, and 𝛽̅𝑓 with 𝐻0 and the 309 

wave steepness parameter explains a further 8%. Including the time varying value of beach 310 

slope typically explains 4% more than mean location beach slope. The root mean square error 311 

(RMSE) improves from a value of 0.25 to 0.20m through including more parameters in the 312 

equations.  313 

At best, the analysis shows that the empirical equations can capture 54% of the variance. So 314 

to summarise, it appears that the significant wave height explains the largest portion of the 315 

variance, followed by beach slope and then the wave steepness term. The remaining variance 316 

could be accounted for by camera and tide gauge SWL datum measurement error, unresolved 317 

parameterisation of the effect of local sea vs remote swell, wave direction, embayment 318 

characteristics, beach porosity and water table effects (Gourlay, 1992). 319 

  320 
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Table 2 Empirical model zero crossing regression parameters 𝛼 𝑎𝑛𝑑 𝑛 and goodness of fit 321 

parameters. The r2 values indicates the percentage of the total variation in the measurements 322 

can be explained by the linear relationship between empirical model and the Stockdon et al., 323 

(2006) measurements. The row values in bold are from (Stockdon et al., 2006). Coloured text 324 

corresponds to Figure 3, Figure 6 and Figure 7. 325 
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 326 

Quantile regression analysis (Q-Q) plots for a selection of equations in Table 2 are compared 327 

to the empirical measurements to examine how well the fitted linear regression parameters 328 

(Table 2) represent the highest measured levels of the distribution (Figure 3). For the 329 

regression  regression parameters Pearson   

Form  𝜂̅𝑠 Appears in 𝛼 𝑛 r2 RMSE (m) 

𝜶𝑯𝟎 
Guza & Thornton 

1981 
0.31 - 0.299 0.253 

𝛼𝛽̅𝑓 𝐻0 - 3.71 - 0.434 0.231 

𝛼𝛽𝑓 𝐻0 - 3.61 - 0.466 0.229 

𝛼𝐻0
𝑛  - 0.40 0.61 0.317 0.235 

𝛼𝛽̅𝑓 𝐻0
𝑛  - 4.65 0.66 0.430 0.217 

𝛼𝛽𝑓 𝐻0
𝑛  - 4.56 0.63 0.456 0.214 

𝛼𝐻0 (
𝐻0

𝐿0
)

−
1
2
 - 0.03 - 0.38 0.224 

𝛼𝛽̅𝑓 𝐻0 (
𝐻0

𝐿0
)

−
1
2
 Nielson 1988 0.35 - 0.42 0.223 

𝛼𝛽𝑓 𝐻0 (
𝐻0

𝐿0
)

−
1
2
 Stockdon et al 2006 0.35 - 0.485 0.213 

𝛼𝐻0 (
𝐻0

𝐿0
)

𝑛

 - 0.06 -0.36 0.416 0.218 

𝛼𝛽̅𝑓 𝐻0 (
𝐻0

𝐿0
)

𝑛

 Gourlay 1992 1.06 -0.28 0.499 0.206 

𝛼𝛽𝑓 𝐻0 (
𝐻0

𝐿0
)

𝑛

 - 0.92 -0.30 0.543 0.200 

𝛼𝐻0 (
𝐻0

𝐿0
)

−
1
3
  Van Dorn 1978 0.07 - 0.415 0.218 

𝛼𝛽̅𝑓 𝐻0 (
𝐻0

𝐿0
)

−
1
3
 - 0.81 - 0.492 0.207 

𝛼𝛽𝑓 𝐻0 (
𝐻0

𝐿0
)

−
1
3
 - 0.79 - 0.540 0.200 
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equations not considering local beach slope (Figure 3a), the basic rule of thumb relationship 330 

of 𝜂̅𝑠 = 0.31𝐻0 best captures the highest measured levels and should be considered when 331 

using empirical equations for extreme value analysis where the beach slope is unknown. With 332 

the inclusion of beach slope, the relationships including wave height and wave steepness are 333 

better at resolving the highest measured levels (Figure 3b). The challenges with building a 334 

national shoreline wave setup hindcast, is that there is limited beach slope data (Turner et al., 335 

2016), which limits how well we can represent the population of extremes (𝜂̅𝑠 and MTWL) 336 

and how the event timing of the wave extremes with surge and tide will play out. Therefore 337 

an initial first-pass national analysis is presented in the next section, which uses the simple 338 

rule of thumb to capture the extremes where the beach slope is unknown. 339 

The analysis in the next section is also presented for a higher-order second-pass beach scale 340 

analysis for three beach slope categories; gentle, moderate and steep based on the distribution 341 

of the empirical dataset (Stockdon et al., 2006). The moderate beach slope of 0.087 is based 342 

on the mean beach slope in the empirical dataset. We note that the slope of the regression 343 

equations (𝛼) (Table 2) without a beach slope are equivalent to the corresponding equation 344 

with a beach slope 𝛽̅𝑓 ≈ 0.083 to 0.086. To represent a wide range of beach slope categories 345 

within the measured profiles, a gentle beach slope was assigned the 5th percentile 0.023 and 346 

the steep beach slope was assigned the maximum value 0.16 from the empirical dataset 347 

(Stockdon et al., 2006). The maximum value was chosen because beach slopes in Australia 348 

have been measured larger than 0.16 (Turner et al., 2016).  349 

 

Figure 3 Empirical quantile-quantile plots. The 491 sorted measured values (Stockdon et 

al., 2006) are plotted against the sorted empirical model estimates to show the comparison 

of climate population highest measured levels. See Table 2 for time series model 

comparison.  

 350 

Repeating this regression analysis with the 38 measurements for the Australian beaches 351 

(Nielsen & Hanslow, 1991) yielded a similar scale parametrisation (𝛼) but with a reduced 352 

goodness of fit for both the rule of thumb 𝜂̅𝑠 = 𝛼𝐻0 (𝛼 = 0.29, 𝑟2 = 0.25, 𝑅𝑀𝑆𝐸 = 0.334) 353 

and the equation including wave steepness 𝜂̅𝑠 = 𝛼𝐻0(𝐻0 𝐿0⁄ )−1 3⁄  (𝛼 = 0.07, 𝑟2 =354 

0.25, 𝑅𝑀𝑆𝐸 = 0.3). Including beach slope showed a reduced scale parameterisation (𝛼) and 355 

reduced goodness of fit for both the rule of thumb 𝜂̅𝑠 = 𝛼𝛽̅𝑓𝐻0 (𝛼 = 2.8, 𝑟2 =356 
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0.45, 𝑅𝑀𝑆𝐸 = 0.39) and the equation including wave steepness 𝜂̅𝑠 = 𝛼𝛽̅𝑓𝐻0(𝐻0 𝐿0⁄ )−1 3⁄  357 

(𝛼 = 0.71, 𝑟2 = 0.47, 𝑅𝑀𝑆𝐸 = 0.36) for the Australian beaches. Therefore there is 358 

reasonable agreement between the northern hemisphere video camera-based measurements 359 

(Stockdon et al., 2006) and the Australian transgressions past an array of stakes 360 

measurements which have reduced measurement sample and assumptions on the Rayleigh 361 

distribution (Nielsen & Hanslow, 1991).  362 

5.2. Extreme value analysis results 363 

5.2.1. ROMS SWL validation 364 

Computed annual return levels (Equation 6) from ROMS SWL (Colberg et al., 2019) 365 

hindcast simulations and extreme value analysis are compared to detrended measurements at 366 

30 validation sites in Haigh et al., (2014) using their method for adjusting for the AHD. We 367 

note that this method to adjust for AHD removes any validation of storm-tide at the 1-year 368 

return level and improves the comparison at higher return intervals (10- 50- and 100-year) by 369 

removing any issues in the modelled tidal range or storm surge magnitude captured in 1-year 370 

return level from the higher return levels. The limitations with the ROMS and Mike-21 371 

modelled tidal range and storm surge magnitudes are provided in the cited source literature 372 

(Colberg et al., 2019; Haigh, Wijeratne, et al., 2014). The Haigh et al., (2014) study presented 373 

results for a generalised extreme value (GEV) fit but indicates the preferred distribution was 374 

the Gumbel (GUM) which provided similar results to GEV r-largest method. Table 3 375 

compares the GEV fitted using AMM 10-, 50- and 100-year measured return levels to the 376 

ROMS modelled GUM values. The model comparison performs poorly at the Wyndham tide 377 

gauge where there are complex storm-tide conditions, so is removed from the comparison. 378 

The average differences across the 29 sites (excluding Wyndham) are 0.03 m larger than the 379 

Haigh study, which is understandable given they used GEV fits with a limiting shape 380 

parameter for the comparison. The difference between the models is small considering Mike-381 

21 is run for a period around double that of the ROMS simulations, while the ROMS 382 

simulation have twice the grid resolution of the Mike-21 model at the coast and a much 383 

higher temporal and spatial atmospheric forcing data. This perhaps suggest higher temporal 384 

and spatial resolution storm-tide modelling can offset the shortcoming of shorter duration 385 

modelling to estimate extreme values.  386 

  387 
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Table 3 Comparison of the SWL 10-,50- and 100- year tide-gauge measured GEV using a 388 

AMM and ROMS model predicted GUM using a AMM return levels for 2010 (relative to m 389 

AHD). 390 

 10-year  50-year  100-year  

Site Name Meas. Pred. Abs. 

Dif. 

Meas. Pred. Abs. 

Dif. 

Meas. Pred. Abs. 

Dif. Point Lonsdale 1.18 1.16 0.02 1.27 1.28 0.01 1.32 1.33 0.01 

Geelong 1.02 0.99 0.03 1.08 1.10 0.02 1.11 1.15 0.04 

Williamstown 1.03 1.05 0.02 1.10 1.19 0.09 1.13 1.24 0.11 

Fort Denison 1.35 1.30 0.05 1.46 1.36 0.10 1.55 1.38 0.17 

Newcastle 1.25 1.21 0.04 1.34 1.27 0.07 1.42 1.30 0.12 

Brisbane 1.65 1.64 0.01 1.69 1.69 0.00 1.70 1.71 0.01 

Bundaberg 2.02 1.96 0.06 2.11 2.04 0.07 2.17 2.08 0.09 

Mackay 3.75 3.61 0.14 3.96 3.68 0.28 4.12 3.71 0.41 

Townsville 2.40 2.34 0.06 2.62 2.43 0.19 2.80 2.48 0.32 

Cairns 1.96 1.89 0.07 2.08 1.97 0.11 2.14 2.00 0.14 

Darwin 1.66 1.53 0.13 1.92 1.70 0.22 2.13 1.77 0.36 

Milner Bay 3.97 3.98 0.01 4.08 4.05 0.03 4.15 4.09 0.06 

*Wyndham 4.12 3.77 0.35 4.33 3.77 0.56 4.58 3.78 0.80 

Broome 5.25 5.27 0.02 5.35 5.41 0.06 5.38 5.47 0.09 

Port Hedland 3.76 3.65 0.11 4.04 3.76 0.28 4.30 3.81 0.49 

Carnarvon 1.29 1.14 0.15 1.43 1.18 0.25 1.53 1.20 0.33 

Geraldton 1.06 0.91 0.15 1.19 1.02 0.17 1.27 1.06 0.21 

Fremantle 1.11 0.98 0.13 1.27 1.07 0.20 1.39 1.11 0.28 

Bunbury 1.18 1.04 0.14 1.37 1.15 0.22 1.52 1.20 0.32 

Albany 1.01 1.00 0.01 1.06 1.06 0.00 1.08 1.09 0.01 

Esperance 1.18 1.18 0.00 1.24 1.28 0.04 1.26 1.33 0.07 

Thevenard 1.91 1.82 0.09 2.05 1.97 0.08 2.13 2.03 0.10 

Port Lincoln 1.67 1.46 0.21 1.86 1.57 0.29 1.99 1.62 0.37 

Port Pirie 2.61 2.41 0.20 2.86 2.63 0.23 3.03 2.73 0.30 

Port Adelaide outer 2.39 2.17 0.22 2.62 2.31 0.31 2.78 2.37 0.41 

Port Adelaide 

Inner 

2.26 2.05 0.21 2.44 2.18 0.26 2.56 2.24 0.32 

Victor Harbour 1.51 1.43 0.08 1.61 1.54 0.07 1.67 1.59 0.08 

Hobart 1.18 1.13 0.05 1.36 1.25 0.11 1.52 1.30 0.22 

George Town 1.84 1.79 0.05 1.93 1.90 0.03 1.98 1.95 0.03 

Burnie 1.92 1.87 0.05 2.02 1.99 0.03 2.08 2.04 0.04 

*Mean excluding 

Wyndham 

  0.09     0.13     0.19 

5.2.2. First-pass national analysis 391 

The first-pass analysis of the contribution of coastline wave setup to MTWL is calculated 392 

with the rule of thumb equation, because it is shown to be best suited to capture the highest 393 

measured levels (Figure 3a) in the absence of a reliable dataset of beach slope for the entire 394 

Australian coastline. Figure 4 shows the maps of the SWL, shoreline wave setup and the 395 

MTWL for a 1-year and 100-year event. The 1-year SWL (Figure 4a) is largest in northwest 396 

of Western Australia (NWWA) and can be principally attributed to the magnitude of the 397 

highest astronomical tide (McInnes et al., 2016). For the 100-year SWL levels (Figure 4b), 398 

the influence of storm surge is increased for the southern margin in the South Australian 399 

Bight and Bass Strait, notionally driven by eastward travelling extratropical cyclones and 400 
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fronts most frequent in winter months (McInnes et al., 2016). The 1-year shoreline wave 401 

setup is largest for the southern coastline, facing the southwest, exposed to the large waves 402 

generated in the Southern Ocean (Hemer et al., 2017). The 100-year shoreline wave setup 403 

plot (Figure 4d) shows the largest shoreline wave setup values along the west coast of 404 

Tasmania. The same map also shows the increased levels along the NWWA coastline and in 405 

the Gulf of Carpentaria, both locations subject to the impacts of tropical cyclones. We note 406 

the ~30 year hindcast includes a limited number of the infrequent occurring tropical cyclone 407 

events, and the resolution of the atmospheric forcing reanalysis does not capture their full 408 

intensity to properly resolve the return levels at longer return periods. The resulting combined 409 

MTWL for the 1-year return levels (Figure 4e) is largest along the NWWA coastline where 410 

the contribution is dominated by SWL. The 100-year MTWL map (Figure 4f) shows a greater 411 

contribution from waves/storms than the SWL at longer return periods for the southern 412 

coastlines, which are exposed to large waves.  413 
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Figure 4 Maps of the return level for ROMs SWL (top row), empirical shoreline wave setup 

(middle row) and combined MTWL (bottom row). Text and equations at the centre of the 

maps describe the mapped colour values in metres. The left column is the 1-year and right 

column is the 100-year RL. 
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Figure 5a) and b) presents the ratio of the rule of thumb results with the results including 414 

wave steepness for a 1-year and 100-year event. Where the ratio is one, both sets of results 415 

are the same and the equations (numerator/denominator) in Figure 5 are equal. The 1-year 416 

shoreline wave setup calculated with the wave steepness parameter predicts in general a 10-417 

20% lower water level than that calculated with rule of thumb equation (Figure 5a). The 418 

corresponding 100-year values shows a similar pattern, predicting in general a 20-30% lower 419 

water level, where the lower estimates occur along the south west of Western Australia 420 

(SWWA) (Figure 5b). These results are in line with regression analysis showing the under 421 

prediction of the equation with wave steepness (and without beach slope) at the highest 422 

measured levels (Figure 3a). 423 

Figure 5c) and d) compare the 1-year and 100-year Gumbel EVD estimates from the 424 

difference between the MTWL and SWL vs the shoreline wave setup on its own. Figure 5 d) 425 

can be considered to compare the likely nonlinear contribution of shoreline wave setup in the 426 

100-year MTWL estimates vs the 100-year shoreline wave setup value calculated 427 

independently of the SWL. Values larger than one indicates the contribution of shoreline 428 

wave setup to the 100-year MTWL is larger than the 100-year shoreline wave setup value 429 

calculated independently and hence could be considered to represent a longer ARI shoreline 430 

wave setup occurred with the 100-year MTWL ARI. Conversely, values smaller than one 431 

indicates the contribution of shoreline wave setup to the 100-year MTWL is smaller than the 432 

100-year shoreline wave setup value calculated independently and hence could be considered 433 

to represent a shorter ARI shoreline wave setup occurred with the 100-year MTWL ARI. 434 

Here, the exact contributions of waves to MTWL for the 100-year event which occurs due to 435 

the dynamic nature of the atmospheric forcing and stage of the tide cannot be inferred from 436 

this analysis. Nowhere in the analysis is this value one or greater. Large values in Figure 5c) 437 

and d) for the southern Australian coast indicate that the shoreline wave setup contributing to 438 

MTWL compared to the independent shoreline wave setup correspond with relatively longer 439 

ARIs than the lower values in NWWA.  440 

The contribution of shoreline wave setup to MTWL is presented in Figure 5e and f. The 1-441 

year plot (Figure 5e) shows that for parts of the NWWA coastline the contribution of wave 442 

setup to MTWL is less than 10% and that for sections of the southern coastline the 443 

contribution of wave setup to MTWL exceeds 60%. The corresponding figure for the 100-444 

year level (Figure 5f) shows greater contribution of wave setup to MTWL at most locations. 445 
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Figure 5 Maps comparing shoreline wave setup equations and the contribution of 

shoreline wave setup and ROMS SWL to MTWL. Equations describe the ratio of the colour 
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map. The first row compares the rule of thumb to the optimised shoreline wave setup 

equation. The middle row compares the non-linear addition of shoreline wave setup. The 

bottom column compares the contribution of wave setup to MTWL. The left column is the 

1-year and right column is the 100-year RL. 

5.2.3. Second-pass beach scale analysis 446 

The second-pass analysis is provided here for two example locations which will be provided 447 

via a tool at the beach scale for 11,000 beaches around Australia (Short, 2007). The first 448 

example is provided for the Collaroy-Narrabeen shoreline in Eastern Australia (Figure 6) -449 

chosen because of the availability of long term beach profile monitoring at that location 450 

(Turner et al., 2016, http://narrabeen.wrl.unsw.edu.au/). The mean intertidal beach slope for 451 

the five transects, calculated as slope between the linear interpolated zero and 2m water 452 

elevations, ranges from 0.097 to 0.12 but individual surveyed slopes are recorded above 0.2. 453 

Figure 6 shows the return levels with the steep beach slope (0.16) and without slope for 454 

evaluation along the Narrabeen Collaroy coastline. The rule of thumb equation estimates 455 

higher return levels than the equation including wave steepness, as was seen previously in 456 

Figure 3a) and Figure 5a and b). The second-pass analysis assuming a steep profile suggests 457 

that shoreline wave setup could be around 100% larger than the estimate from the first-pass 458 

with no beach slope. At this scale, the ROMS SWL model matches the Mike-21 SWL, and 459 

the Fort Denison tide gauge located 15km away (Table 3). 460 

The second example is provided for Seven Mile beach, NSW, which was chosen because 461 

there are wave setup measurements available for a gentle beach profile (Nielsen & Hanslow, 462 

1991). Figure 7 shows that shoreline wave setup with a gentle beach slope (0.023) could be a 463 

third of the estimates without considering beach slope and could be a less significant 464 

contributor to MTWL than SWL from storm-tide.  465 

The example locations indicate the contribution of shoreline wave setup and SWL to the 466 

combined MTWL would look different for a national analysis if a reliable dataset of beach 467 

slope were available nationally. The rule of thumb scales significant wave height by 31%, the 468 

inclusion of a steep slope scales significant wave height by 59% and including a gentle slope 469 

scales by 8.5%, highlighting the importance of including local beach slope in the empirical 470 

approximation of shoreline wave setup.  471 

http://narrabeen.wrl.unsw.edu.au/
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Figure 6 Return level plot second-pass analysis for Narrabeen Collaroy Beach. Lines 

correspond to equations and text in legend. For a steep slope 𝛽̅𝑓=0.16. 15km from the Fort 

Denison tide gauge. 

 472 
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Figure 7 Return level plot second-pass analysis for Seven Mile Beach. Lines correspond to 

equations and text in legend. For a gentle slope 𝛽̅𝑓=0.023. 115km from the Fort Denison 

tide gauge. 

 473 

6. Discussion and conclusion 474 

We have presented the first estimates of the contribution of shoreline wave setup to the 475 

MTWL climate for Australia. These results require careful consideration given the limited 476 

measurements and significant reliance on model prediction, which we will discuss here in this 477 

final section.   478 

Regression analysis and the 𝑟2 value indicate that at best, the available empirical equations 479 

can capture up to 54% of the measured variance. It appears that the deep water significant 480 

wave height explains most of the variance, followed by beach slope and then the wave 481 

steepness term. The remaining variance could be accounted for by camera and SWL datum 482 

measurement error, unresolved parameterisation of the effect of local sea vs remote swell, 483 

wave direction, embayment characteristics and beach porosity and water table effects 484 

(Gourlay, 1992). The analysis shows reasonable agreement with studies conducted for the 485 

Australian coastline (Nielsen & Hanslow, 1991). The selection of shoreline setup equations 486 

for the different levels of analysis were based on 1) the availability of data, in particular the 487 

beach slope, and 2) the Q-Q plots, which indicated the performance of the equations at the 488 

highest levels of the measured distributions. Here the deep water wave steepness to the power 489 

of 𝑛 = 1 3⁄  (Equation 3) was chosen over the commonly used 𝑛 = 1 2⁄  because of optimal 490 
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regression analysis and Q-Q investigation. More observational studies are required to 491 

understand how the wave steepness transforms from the deep water into the shallow water 492 

surf zone.  493 

Storm-tide return levels provided by the different numerical model configurations of the 494 

ROMS and Mike-21 simulations show similar validation to the tide gauge measurements. We 495 

note that the method to adjust for AHD removes any validation of storm-tide at the 1-year 496 

return level and improves the comparison at higher return intervals (10- 50- and 100-year) by 497 

removing any issues in the modelled tidal range or storm surge magnitude captured in the 1-498 

year return level from the higher return levels. The ~30 year hindcast includes a limited 499 

number of the infrequent occurring tropical cyclone events, and the resolution of the 500 

atmospheric forcing reanalysis does not capture their full intensity to properly resolve the 501 

return levels at longer return periods. The extreme value analysis presented here could be 502 

repeated in future studies using datasets of synthetically modelled tropical cyclone waves and 503 

storm surge (e.g. Haigh, MacPherson, et al., 2014). The Gumbel EVD is shown to match the 504 

highest AMM values in the ~30 year simulations for the example locations (Figure 6 and 505 

Figure 7). Longer datasets (e.g. 100 years of data) would provide better estimates of the 506 

extremes at longer RIs (e.g. the 100-year level), including any asymptotic curvature 507 

representing a physical limit to the height of the extreme water levels. A further limitation of 508 

the modelling of the extremes presented is the extrapolation of the shoreline wave setup 509 

empirical equations beyond the highest values in the measured dataset. This is particularly 510 

evident for the south and west coast 100-year ARI where modelled significant wave heights 511 

are more than three times larger than the highest values in the measured dataset. Addressing 512 

this limitation would require long term monitoring of shoreline wave setup at more locations. 513 

This article provides a first-pass national analysis of wave setup for Australia and examples 514 

of second-pass analysis for Australia’s beaches. It is planned that the second-pass analysis 515 

will be made available to coastal engineers, scientists and practitioners through an online 516 

tool. Third, or higher, order analysis would involve site specific field measurements of the 517 

waves and beach profile. The first pass analysis shows a large contribution of shoreline wave 518 

setup to MTWL estimates, however the example second-pass locations provided demonstrate 519 

the inclusion of local beach slope could change the estimates to be twice as large or only a 520 

third as large as values presented from the national first-pass analysis. This reinforces the 521 

challenges and shortcomings with providing estimates of wave setup on national and global 522 

scales where the magnitude of the shoreline wave setup estimates are very sensitive to local 523 

beach characteristics (Melet et al., 2018; Serafin et al., 2017). While the first-pass estimates 524 

provide a national view of the important contributors to extreme MTWL, for the above 525 

reasons we strongly discourage using this simplification for local-beach scale analysis.  526 

The method for estimating the nonlinear contribution of extreme shoreline wave setup to 527 

MTWL (e.g. Figure 5c, d, e & f) can only provide the likely contribution of waves to the 528 

MTWL for a 1-year or 100-year event. I.e., the exact contributions of waves to MTWL for 529 

the 100-year event which occurs due to the dynamic nature of the atmospheric forcing and 530 

stage of the tide cannot be inferred from this analysis. It should also be noted that the 531 

contribution of wave runup leads to significant additional transient contributions to extreme 532 

water levels. TWL including wave runup, is important for beach erosion hazard. However, 533 

while wave runup and overtopping are more likely to cause any inundation, the damage is 534 

moderate compared to the amount of water behind a storm-tide SWL that stretches across the 535 

shelf and can contribute to catastrophic inundation. The inundation potential of elevated 536 

water across the surf zone from wave setup sits between the runup and storm-tide inundation 537 
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potential. The MTWL estimates provided in this study should be used with caution for 538 

bathtub type inundation studies as waves will have a more dynamic interaction with the 539 

inundated coastline (dunes and seawalls) than the rising storm-tide. Inundation studies should 540 

also consider terrestrial sources during coincided storm events (Wu et al., 2018).   541 

The evolution of different formulations in Equations 1 and 3 of shoreline wave setup being 542 

either based on surf zone bathymetry or beach slope respectively requires further 543 

investigation to better determine the contribution of depth-induced breaking and the beach 544 

swash effect. More recent LIDAR survey technology provides the opportunity to survey the 545 

wave setup line across the surf zone (Brodie et al., 2015), which may lead to improved 546 

formulations of empirical shoreline wave setup that include both beach slope and the effect of 547 

the bathymetry and the generation of infragravity waves (Symonds et al., 1982). 548 
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