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Abstract 19 

Global recognition of climate change and its predicted consequences has created the need for 20 

practical management strategies for increasing the ability of natural ecosystems to capture and 21 

store atmospheric carbon. Mangrove forests, saltmarshes and seagrass meadows, referred to as 22 



2 

blue carbon ecosystems (BCEs), are hotspots of atmospheric CO2 storage due to their capacity 23 

to sequester carbon at a far higher rate than terrestrial forests. Despite increased effort to 24 

understand the mechanisms underpinning blue carbon fluxes, there has been little synthesis of 25 

how management activities influence carbon stocks and greenhouse gas (GHG) fluxes in 26 

BCEs. Here, we present a global meta-analysis of 111 studies that measured how carbon stocks 27 

and GHG fluxes in BCEs respond to various coastal management strategies. Research effort 28 

has focused mainly on restoration approaches, which resulted in significant increases in blue 29 

carbon after 4 years compared to degraded sites, and the potential to reach parity with natural 30 

sites after 7 – 17 years. Lesser-studied management alternatives, such as sediment manipulation 31 

and altered hydrology, showed only increases in biomass and weaker responses for soil carbon 32 

stocks and sequestration. The response of GHG emissions to management was complex, with 33 

managed sites emitting less than natural reference sites but emitting more compared to 34 

degraded sites. Individual GHGs also differed in their responses to management. To date, blue 35 

carbon management studies are under-represented in the southern hemisphere and are usually 36 

limited in duration (61% of studies < 3 yrs duration). Our meta-analysis describes the current 37 

state of blue carbon management from the available data and highlights recommendations for 38 

prioritising conservation management, extending monitoring timeframes of BCE carbon 39 

stocks, improving our understanding of GHG fluxes in open coastal systems and redistributing 40 

management and research effort into under-studied, high-risk areas. 41 

42 

Introduction 43 

Vegetated coastal ecosystems (mangrove forests, saltmarshes and seagrass meadows) store and 44 

accumulate globally significant amounts of organic carbon (McLeod et al., 2011, Nellemann 45 

&  Corcoran, 2009). Despite occupying less than 1% of the ocean floor, these ecosystems 46 

(collectively referred to as blue carbon ecosystem or BCEs) accumulate approximately 50% of 47 
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all organic carbon buried at sea (Duarte et al., 2013, Serrano et al., 2019). Furthermore, while 48 

only occupying 3% of the area of terrestrial forests, BCEs sequester a comparable amount of 49 

carbon (McLeod et al., 2011), as carbon burial rates in BCE sediments are approximately 40 50 

times higher compared to forest soils (Breithaupt et al., 2012, Chmura et al., 2003, McLeod et 51 

al., 2011, Schlesinger, 1990). This is because the complex vegetated structures in BCEs 52 

efficiently trap sediments suspended in tidal flows from internal and external sources, and 53 

accumulate carbon via biological inputs from microbial mats and turf algae (Alongi, 2012, 54 

McLeod et al., 2011). BCE sediments are also predominantly low in oxygen and high in 55 

salinity, which slows down carbon re-mineralisation processes and methanogenesis (Donato et 56 

al., 2011, Pendleton et al., 2012, Poffenbarger et al., 2011). This combination of fast carbon 57 

burial and slowed carbon re-mineralisation makes carbon sequestration in BCE sediments 58 

relevant for mitigating climate change, particularly at the national scale, on which climate 59 

mitigation agreements such as the Paris Agreement are based (Taillardat et al., 2018). 60 

However, while blue carbon is being increasingly considered by coastal management bodies 61 

around the world, there remains limited data on the effectiveness of management on 62 

influencing blue carbon stocks. 63 

Current methods for carbon-focused management in BCEs have primarily adopted 64 

terrestrial methods and policies (such as Reducing Emissions from Deforestation and forest 65 

Degradation, REDD). These often quantify the amount of carbon sequestered as a result of 66 

protecting a BCE against ongoing loss from anthropogenic threats such as urbanisation, 67 

reclamation, deforestation, eutrophication and pollution (Ahmed &  Glaser, 2016, Alongi, 68 

2011, Herr et al., 2017, Lovelock &  Duarte, 2019). Adapting such terrestrial forest 69 

management strategies to BCEs may enhance carbon sequestration, although the complex and 70 

open nature of coastal ecosystems compared to their terrestrial counterparts raise challenges in 71 

accurately identifying the underlying mechanisms controlling fluxes of both carbon and 72 
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greenhouse gases (GHGs) (Belshe et al., 2017, Johannessen &  Macdonald, 2016, McLeod et 73 

al., 2011). Restoration management for example, which utilises reconstruction or rehabilitation 74 

of degraded areas, has long been one of the main approaches used in terrestrial systems to 75 

restore ecosystem function to natural areas which have been transformed by deforestation, 76 

land-use change and pollution (Camargo et al., 2002, Lamb et al., 2005, Stanturf et al., 2014).  77 

Adapting restoration to coastal areas is a more complex process however, which often leads to 78 

projects underperforming or varying in success rates (Bayraktarov et al., 2016, Thom, 2000).  79 

Innovation to traditional forestry management approaches such as restoration is therefore 80 

required in order to increase their efficiency in coastal systems, as is more empirically-driven, 81 

evidence-based investigation into the effectiveness of current efforts (Silliman et al., 2015). 82 

Coastal management strategies have been applied all around the world in attempts to 83 

enhance blue carbon storage (Howard et al., 2017).  These include altering hydrological 84 

regimes by increasing or restricting the rate of flow of either saltwater or freshwater, and 85 

manipulating sediments to increase or decrease nutrient levels or elevation, or to otherwise 86 

enhance conditions for carbon sequestration. For example, restricting freshwater flow by river 87 

impoundment or increasing tidal flow under managed realignment alters both the salinity and 88 

moisture levels in BCEs, which in turn effects plant growth, soil carbon mineralisation and 89 

CO2 flux (Kathilankal et al., 2008, Setia et al., 2013). While individual studies have assessed 90 

carbon-relevant metrics under such management approaches, there is of yet no large-scale 91 

synthesis of this data from which to draw conclusions as to the impact of coastal management 92 

on blue carbon stocks across different habitats and regions (but see Sasmito et al., 2019). 93 

In order to include these proposed management activities as methods for carbon 94 

crediting in emission reduction schemes, we need to clearly demonstrate that a proposed 95 

management activity will increase ecosystem carbon stocks over relevant timeframes for 96 

climate change mitigation. To address this knowledge gap, we conducted a systematic literature 97 



5 

review to determine what empirical evidence is currently available to support the inclusion of 98 

BCE management into emission trading schemes for climate change mitigation. Here, we 99 

present a quantitative meta-analysis of studies that have reported on changes in BCE carbon 100 

stocks or GHG emissions in response to management interventions.  The aims of this review 101 

were: 1) to assess the current availability of empirical data on blue carbon management, 2) to 102 

determine the effect of different management types on carbon sequestration and GHG fluxes 103 

in BCEs and 3) to investigate the extent to which factors inherent to different monitoring 104 

approaches (i.e. experimental design, timeframe and sampling methodology) influenced 105 

measured responses to management.  106 

107 

Materials & Methods108 

We performed a broad search of the literature for papers concerning drivers of carbon 109 

sequestration and GHG emissions in coastal vegetated ecosystems (i.e. mangroves, saltmarsh 110 

and seagrass). Our search, using ISI Web of Science on the 1st of June 2018 used the following 111 

search terms: (seagrass* OR "sea grass*" OR saltmarsh* OR "salt marsh*" OR mangrove* OR 112 

"tidal marsh*" OR "tidal wetland*") AND TS = ("carbon sequest*" OR methane OR geochem* 113 

OR CO2 OR CH4 OR N2O OR "nitrous oxide" OR "carbon dioxide" OR "blue carbon" OR 114 

carbon OR biomass* OR root* OR management). We did a follow-up search on June 1st, 2019 115 

to include recent studies and scanned the reference lists of relevant reviews and meta-analyses 116 

for additional papers. This returned a total of 11,221 papers. We selected studies according to 117 

PRISMA protocols (http://www.prisma-statement.org).  Firstly, we filtered search results by 118 

title to include only those which likely involved management relevant to carbon levels (i.e. 119 

implications for carbon metrics including changes in biomass, soil carbon or sequestration 120 

rates) in BCEs or blue carbon specifically. We then filtered by abstract which required specific 121 

mention of management policy, field monitoring or experimental data collection in BCEs for 122 
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the purpose of evaluating land management strategies that influence above- or below-ground 123 

biomass, carbon fixation or GHG fluxes. We then assessed full texts for empirical data or 124 

estimates based on empirical data related to carbon storage. For papers without suitable data 125 

(i.e. literature and policy reviews) we performed a supplementary search of bibliographies for 126 

potential source papers overlooked in the initial search.  A total of 192 studies met our criteria 127 

(see PRISMA diagram, Fig. S1).  Finally, we eliminated papers which did not utilise control 128 

sites for comparison with the managed site or contained either modelled or qualitative data, 129 

resulting in 112 studies.  130 

We allocated studies meeting our criteria into the following five broad management 131 

categories for analysis: 1) Altered hydrology (including managed realignment, impoundment, 132 

diking, altered flow of freshwater, seawater or sewerage 2), Sediment manipulation (including 133 

chemical treatment, artificial substrate, human transported material, dredging, beach 134 

renourishment and sediment supply, 3) Deforestation (including cutting, clearing, thinning, 135 

logging), 4) Land-use change (repurposing/reclaiming BCE habitats for other land usages such 136 

as agriculture, aquaculture or urban development), and 5) Restoration (including reforestation, 137 

transplantation, rehabilitation and creation). Where available, we extracted data on study 138 

location, habitat type (mangroves, saltmarsh or seagrass), species, management type, study 139 

time frame, sampling methodology (e.g. quadrats, sediment cores, eddy covariance), and 140 

experimental design.  Experimental designs were classified as assessing treatment effects by 141 

either comparing sites with and without management (control / impact or CI), comparing either 142 

before management to afterwards (before / after or BA), or by a more rigorous combination of 143 

the two (before / after / control / response or BACI (Smith, 2014)). For our response variables, 144 

we focused on empirical measures extracted from text, tables or figures (using open source 145 

graphical digitiser software; Huwalt, 2001) of carbon stocks (i.e. biomass, soil carbon, 146 



7 

sequestration) and fluxes (including CO2 and CH4, as well as N2O, another GHG relevant to 147 

climate change (Muñoz et al., 2010)) in order to calculate response ratios (RRs) as follows: 148 

For BA and CI studies:  149 

ln[RR] = ln[B or I] – ln[A or C]  (1) 150 

and for BACI studies: 151 

ln[RR] = ln[IA / CA] – ln[IB / CB]  (2) 152 

where ln[RR] is the log response ratio, I is the impacted site mean, C is the control site mean, 153 

A is the after mean, and B is the before mean (Hedges et al., 1999). As managed sites may be 154 

compared to reference or degraded conditions, effect sizes were calculated independently for 155 

each comparator type. The effect of management on a given carbon or GHG metric was 156 

considered significant if the 95% confidence interval of the mean effect size did not overlap 157 

with zero. Where possible, we extracted multiple individual RRs from a single study, rather 158 

than averaging across sites to produce a single overall mean. This allowed us to capture as 159 

much information on responses to BCE management as possible and left us with a total of 353 160 

RRs to analyse the response of BCEs to blue carbon management.   161 

For each management type, we constructed a series of generalised linear mixed-effects 162 

models. Not all combinations of variables (e.g. management type, habitat, sampling 163 

methodology, metric) existed in our dataset, largely precluding the exploration of complex 164 

interactions. Instead, we examined management-specific responses of carbon storage 165 

(sequestration, soil carbon levels and biomass) and GHG fluxes (CH4, CO2, N2O) (fitted as 166 

fixed effects) between managed and control sites after separating data by control site 167 

comparator (reference or degraded site). We constructed models with each of the variables 168 

included as a single factor, and then with all possible two-way interactions where data allowed 169 

(see Supplementary Material for model structures). We also included a site nested within study 170 

random effect (see Weighting and non-independence). We compared competing models using 171 



8 

Akaike’s Information Criterion corrected for small sample sizes (AICc; Burnham &  Anderson, 172 

2002), and rescaled these values as the difference between each model and the model with the 173 

lowest AICc (∆AICc).   174 

We also analysed how carbon storage changes with time since management by creating 175 

generalised linear mixed-effects models for the management types with sufficient temporal 176 

data: restoration, deforestation and altered hydrology. We included comparator type (degraded 177 

or reference site) and years (time since management) fitted as fixed effects. We included years 178 

in models as non-transformed, curvilinear and log-transformed. We used the same nested 179 

random effect and model comparison approach as described above. To plot responses, we 180 

produced unbiased parameter estimates and 95% confidence intervals using restricted 181 

maximum-likelihood estimation (REML) and supressed intercepts. We plotted response ratios 182 

for each management type (separated by comparator), habitat type, study design, carbon data 183 

type and GHG, including grand means for each. Grand means were calculated by excluding 184 

the fixed effect for each respective model. When sufficient data were not available to run full 185 

models, complexity was reduced (e.g. by removing the nested term) so that model estimates 186 

and variances could still be extracted. We used the lmerTest package (Kuznetsova et al., 2015) 187 

in R v.3.2.2 (R Development Core Team, 2015) to build models and extract least-squares 188 

means and confidence intervals (Stanley &  Doucouliagos, 2015). 189 

190 

Weighting and non-independence 191 

In general, RRs based on larger sample sizes should contribute more weight to the overall 192 

estimate than those based on smaller sample sizes, as variance is typically reduced as sample 193 

size increases. Here, many of the studies did not report sufficient information to calculate 194 

estimates of variance, and others examined responses in managed sites relative to a single 195 

control site. These two issues are relatively common in ecological studies on large study 196 
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systems (e.g. Sievers et al., 2018), and precludes the calculation of standard weightings used 197 

in formal meta-analyses (see Lajeunesse, 2011, Lajeunesse, 2015). When variance estimates 198 

are not provided within studies, weighting based on sample sizes can be used (Mengersen et 199 

al., 2013b). Instead of omitting a high proportion of studies or conducting unweighted analyses, 200 

we calculated weights based on the sum of sample sizes (Stanley &  Doucouliagos, 2015). 201 

Given we had cases where a single control site was used (since we calculated a separate RR 202 

for each managed site), this approach down-weighted these estimates relative to a RR based on 203 

the average of multiple sites, helping to deal with non-independence. 204 

In addition, we incorporated two unique identifiers as a random effect, where ‘site’ was 205 

nested within ‘study’. Site nested within study accounted for any correlation amongst 206 

observations at a given site and accounted for common local environmental or contextual 207 

effects. The study random effect accounted for any systematic differences due to common 208 

regional environmental conditions or study-specific methodologies or biases. Our model 209 

structure therefore allowed us to analyse multiple RRs from a given study rather than having 210 

to aggregate data to a single mean value. This ultimately accounted for non-independence of 211 

multiple entries extracted from the same study, and multiple studies conducted at the same site 212 

(Davidson et al., 2017, Krist, 2011). Furthermore, since our models used maximum likelihood 213 

methods, studies were implicitly weighted by the uncertainty of the estimates since the 214 

regression analyses (and the variation in the regression estimates) were included as part of the 215 

model (Mengersen et al., 2013a).216 

217 

Results 218 

1) Summary of BCE management data 219 

We allocated studies meeting our selection criteria into the five previously defined 220 

management categories as follows: restoration (n = 39) was the most studied management 221 
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approach in BCEs, followed by deforestation (n = 31), altered hydrology (n = 23), sediment 222 

manipulation (n = 11) and conservation (n = 7). Geographically, the majority of studies were 223 

conducted in North America (31%), followed by Asia (29%), Europe (20%), Oceania (12%), 224 

Africa (4%) and South America (4%; Fig. 1). Habitat types were differently represented across 225 

locations, with the majority of studies in Europe and North America focused on saltmarshes 226 

while mangrove studies dominated other regions (Fig. 1). Most response ratios across habitats 227 

were calculated from biomass data (n = 142), followed by soil organic carbon (n = 112), GHG 228 

fluxes (n = 54) and sequestration (n = 45) (Table 1). CI study designs were most commonly 229 

used (n = 79), followed by BA (n = 21) and BACI (n = 12) (Figure S2). 230 

231 

232 

Figure 1. – Regional proportions of studies for each blue carbon ecosystem from North America (n = 33, 233 

mangrove = 12%, saltmarsh = 65%, seagrass = 23%), Asia (n = 32, mangrove = 70%, saltmarsh = 30%), Europe 234 

(n = 25, saltmarsh = 67%, seagrass = 33%), Oceania (n = 10, mangrove = 43%, saltmarsh = 36%, seagrass = 235 

21%), Africa (n = 4, mangrove = 75%, seagrass = 25%) and South America (n = 4, mangrove = 100%). Three 236 

studies pooled data across regions. Individual study site locations indicated and habitat distribution layers are 237 

expanded to aid visualisation, adapting existing datasets for mangroves (Giri et al., 2011), saltmarshes (Mcowen238 

et al., 2017) and seagrass habitats (Short, 2016). 239 

240 
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Table 1. – Number of response ratios (RRs) taken for each carbon metric from the pool of 112 studies for each 241 

management class and habitat.  BIO = Biomass, SOC = Soil Organic Carbon, SEQ = Sequestration, FLX = 242 

greenhouse gas (GHG) flux (*note: no flux RRs recorded for seagrass, multiple RRs drawn from some studies). 243 

Mangrove Salt Marsh Seagrass

Management Description 

B
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C
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B
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Q

T
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Altered 

hydrology 

Managed 

realignment, 

impoundment, 

diking, altered flow 

3 3 3 20 16 5 18 4 1 73 

Sediment 

manipulation 

Chemical treatment, 

artificial substrate, 

dredging, beach 

renourishment 

27 2 1 5 2 37 

Land-use 

change 

Repurposing or 

reclamation of natural 

habitats for 

agriculture, 

aquaculture or 

urbanisation 

2 5 7 6 1 4 1 1 1 28 

Restoration 

Reforestation, 

rehabilitation or 

creation of new areas 

via plantation or 

transplantation 

13 18 10 7 43 25 3 11 12 19 2 163 

Deforestation 
Cutting, clearing or 

thinning of vegetation 
16 6 11 8  1 12 1 3   57 

Total 31 32 31 24 91 59 10 33 22 22 3 358 

244 
2) Blue carbon and GHG flux response to BCE management 245 

Combining all management categories, managed sites stored more carbon compared to 246 

degraded controls (+125.5% more than sites in degraded condition). Each individual 247 

management type significantly increased carbon storage (i.e. biomass, soil carbon and 248 

sequestration combined) relative to degraded controls, including sediment manipulation 249 

(+427.5%), restoration (+67.8%) and altered hydrology (+176.8%) (we found no deforestation 250 

or land-use change studies used degraded reference sites as comparators). Overall, managed 251 

sites also stored less carbon relative to natural reference controls (-26.1%). This was largely 252 

driven by sites that underwent land-use change (-42.8%) and deforestation (34.1%), then 253 
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restoration (-33%) and sediment manipulation (-28.3%). On the other hand, sites that had their 254 

hydrology altered did not differ statistically from their reference comparators (-1.3%). There 255 

was no significant difference in carbon storage responses to management between BCEs, 256 

although grand mean RRs show seagrass with a notably higher mean response to management 257 

compared to mangroves or saltmarshes (Fig. 2).  258 



13 

259 

Figure 2. – Forest plots of weighted response ratios (and 95% CI on log scale) for carbon storage across 260 

management types in each blue carbon ecosystem, separated by comparator used in the study (i.e. degraded or 261 

natural reference control site). 262 
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Overall, GHG flux was not significantly different between managed and degraded sites 263 

or between managed and reference sites (Fig. 3). However, while most management types did 264 

not significantly change GHG emissions, restored sites compared to degraded conditions 265 

showed a significant 16.2% emission increase (Fig. 3). For managed sites compared to 266 

reference sites, there was considerable variability among management approaches, with sites 267 

that underwent restoration (41.6% emission reduction), deforestation (120.1% emission 268 

reduction) or had their hydrology altered (18.7% rise in emission) not differing statistically 269 

from their reference comparators (Fig. 3). 270 

Mean RRs for each individual GHG across management types were not significantly 271 

different with either degraded or reference comparators, except for CH4.  CH4 emissions 272 

increased by 29.3% under restoration and by 89.7% under altered hydrology management 273 

compared to degraded sites, and reduced by 464.6% under restoration and by 238.2% under 274 

land-use change management compared to reference sites (Fig. 3).  Although not significantly 275 

different, N2O showed an emissions increase of 35.7% across every management category, 276 

while CO2 was the only GHG with a positive grand mean response (10.3% emission reduction). 277 

278 
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279 

Figure 3. – Forest plots of weighted management response ratios (and 95% CI on log scale) for GHG fluxes (CO2, 280 

CH4 and N2O) separated by comparator used in the study (i.e. degraded or natural reference control site). For 281 

readability, signs have been reversed such that positive RR = emission reduction and negative RR = emission 282 

increase. 283 
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284 

3) Effect of monitoring design on BCE management data285 

Overall, estimates from studies that compared managed sites to prior conditions found greater 286 

relative carbon storage (BA = 85.7%, BACI = 75.4%) compared to CI studies (-22.6%) when 287 

combining comparator types (degraded and reference control sites) (Fig. S2). RRs from CI 288 

studies were similar to overall trends, whereby carbon storage was 71.3% greater in managed 289 

sites relative to degraded sites, but 33.4% lower relative to natural reference sites. On the other 290 

hand, carbon storage RRs from BACI studies increased regardless of comparator type (by 291 

36.1% and 225.8% for reference and degraded comparators respectively), but BA studies 292 

followed a similar pattern to CI studies, with carbon storage 215.5% higher relative to degraded 293 

sites, but 14.3% lower relative to reference sites. RRs based on the different metrics used to 294 

quantify carbon storage – biomass, sequestration or soil organic carbon – were similar in 295 

managed BCEs relative to reference controls. When degraded comparators were used, biomass 296 

significantly increased by 604.3%, driven by sediment manipulation (1415.3%), restoration 297 

(269.8%) and altered hydrology (993.6) (Fig. S3). Sequestration (64.5%) and soil carbon also 298 

increased compared to degraded controls (38.6%).  299 

Time since restoration had a significant effect on carbon storage within restored sites. 300 

Models with log-linear relationships were most supported (Table S2), with trends significant 301 

for both degraded (p = 0.005) and reference (p < 0.001) comparators. Based on model 302 

estimates, restored sites stored significantly more carbon than degraded comparators after 4 303 

years since restoration (RR at year 4: 0.36, CI: 0.03 – 0.68) (Fig. 4). On the other hand, restored 304 

sites stored similar amounts of carbon (on average) as reference comparators from 17 years 305 

(RR at year 17: 0.01, CI: -0.29 – 0.30), but based on 95% confidence intervals, may reach 306 

parity after only 7 years since restoration (RR at year 7: -0.23, CI: -0.47 – 0.02) (Fig. 4). 307 

Although there was insufficient data to detect temporal trends for conservation and sediment 308 
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manipulation, null models for both deforestation and altered hydrology were most supported 309 

(Table S2), suggesting no trend through time for these management types.310 

311 

312 

Figure 4. – Log-linear trend lines (with 95% CI) of carbon storage response to restoration in BCEs relative to 313 

degraded (i.e. low or pre-managed, n = 40) and reference (natural or undisturbed, n = 100) comparator sites over 314 

time.315 

316 

Discussion 317 

Current limitations and biases of BCE management data and methodologies 318 

Our global meta-analysis of 112 studies from 36 countries provides a comprehensive overview 319 

of current research into management approaches intended to influence carbon storage and GHG 320 

flux in BCEs. Management-focused studies came predominantly from North America, Asia 321 
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and Europe, with only 20% of studies conducted in the southern hemisphere, which has a lower 322 

proportion of sustainably managed areas and higher threat levels due a combination of 323 

industrialisation, land-use change and climate change impacts (Chowdhury et al., 2017, 324 

Cresswell &  Semeniuk, 2018, Gedan et al., 2009).  As an example to illustrate this, Europe 325 

and North America combined provided 80% of seagrass management studies in our analysis, 326 

while constituting only an estimated 6% of the global seagrass cover (Short, 2016).  This 327 

contrasts to a country such as Indonesia, which provided only 11.6% of mangrove management 328 

studies while accounting for 22.6% of the global cover (Giri et al., 2011).  Despite the scarcity 329 

of empirical evidence, blue carbon ecosystems in Indonesia are reported to be declining in 330 

cover due to land-use change and deforestation (Unsworth et al., 2018), resulting in an annual 331 

estimated CO2 emission to the atmosphere-ocean pool of 29,040 Gg (Alongi, 2016).  This 332 

geographical bias in management monitoring is unlikely to be linked solely to factors relating 333 

to the human development index (HDI), as countries such as Japan (HDI = 0.909) with higher 334 

HDIs than Indonesia (HDI = 0.694) returned no studies with empirical management data in our 335 

analysis (United Nations Development Programme, 2018), but rather also cultural and political 336 

attitudes towards prioritising sustainable BCE management. 337 

Biomass and soil carbon were the most commonly used metrics assessing carbon stocks 338 

in BCEs, as common methodologies for obtaining these data require less effort and technical 339 

equipment compared to sequestration rates and GHG fluxes. However, it is important to note 340 

that there is still debate over the reliability of methodologies currently used to obtain estimates 341 

of these carbon stock metrics, more specifically uncertainties around sampling design and 342 

processing and under-sampling of spatial variation leading to over- and under-estimations by 343 

over 30% (Fest et al., submitted, Jeffrey et al., 2019, Young et al., 2018). 344 

Another clear pattern in our data, also common to ecological meta-analyses, was the 345 

dominant use of CI designs over BA or BACI, where managed and control sites were compared 346 
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without temporal context. This is perhaps expected as despite being less robust to confounding 347 

by inherent spatial differences, CI studies are often simpler in terms of experimental design, 348 

required funding and monitoring effort (Sievers et al., 2018). However, studies in our analysis 349 

over longer timescales showed significant fluctuations and variability in carbon metrics over 350 

time (e.g. Craft et al., 2002, Hahn et al., 2015, Lee et al., 2011).  In addition, our analyses and 351 

estimates of carbon storage over time from other studies indicate temporal thresholds exist, 352 

whereby carbon storage gradually increases towards natural levels over a number of years (e.g. 353 

Andrews et al., 2006, Salmo et al., 2013). As half of all of studies included here (49%) 354 

represented assessments carried out within a timeframe of < 1 year. This is an important factor 355 

to account for when assessing past data and during planning of future research. In any case, 356 

standard CI studies still showed a clear benefit of BCE management for blue carbon stocks 357 

when compared to sites experiencing some form of degradation.  When natural reference sites 358 

are used for comparison in management assessment, care must be taken in interpreting the 359 

results.  The carbon response to management reported here was mainly negative when 360 

compared to natural sites, however these comparators represent the optimal goal of 361 

management, and so interpretation should focus on where management effort closes the gap 362 

most efficiently.  In this way, it is clear that management altering hydrology or manipulating 363 

sediment can have as positive an effect as restoration on blue carbon, and deforestation results 364 

in a more substantial decrease from natural levels.  365 

366 

Management effects on blue carbon and GHG flux 367 

Our meta-analysis suggests improvement in carbon stocks of managed areas for each 368 

management activity except, as expected, for deforestation and  land-use change. Restoration-369 

based management (including reforestation, afforestation, rehabilitation and transplantation) 370 

was the most commonly studied. The response of carbon storage to restoration in BCEs was 371 
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highly dependent on the comparator type used for controls and the time since restoration.  372 

Relative to degraded conditions, restored sites stored significantly greater amounts of carbon, 373 

suggesting that restoration is a useful management approach for offsetting GHG emissions. 374 

However, most studies (81%) compared restored sites to natural reference sites (i.e. those of 375 

high condition, or the condition that restoration seeks to attain). Under these circumstances, the 376 

mean response was negative, indicating that carbon storage had not reached parity with these 377 

reference sites. This is likely due to the short time frame following restoration when samples 378 

were taken, with more than 35% of studies reporting carbon storage within a year and 74% of 379 

studies reporting carbon storage within ten years. Confirming this, we found a significant 380 

positive trend through time, providing evidence that, on average, carbon storage in restored 381 

sites is comparable to reference sites after 17 years. Although this indicates restoration is a 382 

viable management strategy to enhance carbon storage in BCEs, it also reinforces the need for 383 

temporal context to be taken into account when assessing responses to management activities. 384 

Short-term monitoring is likely to underestimate achievable carbon sequestration benefits our 385 

models suggest maximum increases accumulate over number of years. Individual restoration 386 

studies performed over longer time periods reflect similarly increasing patterns of carbon 387 

storage, however short-term monitoring-based trajectories could also overstate long-term 388 

carbon stock benefits given the asymptotic trend in our models   (Burden et al., 2019, Greiner389 

et al., 2013).  In any case, the variance in restoration management success highlights the 390 

importance of conservation management of pristine BCEs. 391 

Unsurprisingly, carbon storage responses to deforestation and land-use change in 392 

BCEs, starkly contrasted with the other management types we analysed. Although 393 

deforestation is not a management approach for increasing carbon storage in BCEs, many of 394 

the world’s BCEs are subject to deforestation through reclamation for urban development and 395 

conversion for use in agriculture or aquaculture (Ahmed &  Glaser, 2016, Richards &  Friess, 396 
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2016, Yang et al., 2019). Management involving deforestation clearly showed the most 397 

negative effect on carbon storage of any management type we investigated. This result would 398 

have been even stronger if not for one study showing a large increase in biomass following 399 

mangrove clearing, driven by elevated algal biomass compared to the reference sites (Granek 400 

&  Ruttenberg, 2008).  However, the response of soil carbon storage to deforestation showed 401 

an even greater decrease than biomass, likely caused by increased remineralisation of the 402 

carbon stored in the sediment as a result of exposure to oxic conditions (Brodersen et al., 2019), 403 

but also leaching, erosion and reduced soft sediment accretion levels (Castillo et al., 2017, 404 

Duncan et al., 2016). This confirms that the loss of carbon sequestration potential in BCE 405 

sediments due to deforestation is far more substantial than the loss of carbon from biomass, 406 

which is predicted by the relatively higher sequestration potential of sediment compared to 407 

biomass  (McLeod et al., 2011). In order to better understand BCE carbon fluxes, more research 408 

is needed to quantify the amount of belowground carbon subsequently lost via CO2 and CH4409 

emissions back to the atmosphere. 410 

Altering hydrological regimes in BCEs increased both carbon storage and GHG 411 

emissions. The GHG-specific analysis indicated that CH4 was the primary driver of this trend 412 

rather than CO2, though these fluxes were not significantly different. Studies in this 413 

management category primarily aimed to increase or reinstate saltwater flows to BCEs, most 414 

commonly via tidal restoration. Studies which involved restricting salt water flow often noted 415 

reductions in biomass and soil carbon  (Boyd &  Sommerfield, 2016, Yang et al., 2017). 416 

Increased moisture and salinity are conducive to effective carbon storage, as oxidation, 417 

methanogenesis and denitrification are reduced (Livesley, 2012, Marton et al., 2012). Tidal 418 

restoration is also considered an effective management tool for reducing GHG emissions 419 

(Kroeger et al., 2017). We found, however, that sites managed this way were also potential 420 

sources of N2O and CH4 (Adams et al., 2012, Hahn et al., 2015). Differing GHG flux responses 421 
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to altered hydrology management are often dependent on elevation and rainfall, as managed 422 

sites with higher elevation and more stable patterns of precipitation have comparatively lower 423 

GHG emissions (Burden et al., 2013, Mazik et al., 2010, Negandhi et al., 2019). Although the 424 

vast majority of studies in our meta-analysis investigating the effects of altered hydrology in 425 

BCEs were from saltmarsh sites, these processes are likely to be similar for mangroves 426 

(Kroeger et al., 2017). For naturally inundated seagrass habitats, increases in salinity to 427 

enhance carbon storage potential were achieved through reducing freshwater in-flow. This 428 

approach increased biomass and may also reduce turbidity and hydraulic disturbance (Adams 429 

&  Talbot, 1992, Leston et al., 2008). 430 

Sediment manipulation has the potential to enhance carbon budgets in BCEs via 431 

establishing optimal elevations, increasing soil fertility and providing a buffer from variable 432 

environmental effects to increase biomass. Carbon storage in BCEs that underwent sediment 433 

manipulation was similar to other management types included here (i.e. higher compared to 434 

degraded sites and lower compared to reference sites), though temporal scale was limited, with 435 

only 5% of studies quantifying carbon stock beyond 1 year since manipulation. More than any 436 

other management type however, threshold effects must be considered as excessive sediment 437 

manipulation quickly leads to detrimental impacts on carbon storage. In saltmarshes, sediment 438 

addition has an optimal level for restoration of vegetation which varies relative to local 439 

hydrology, above and below which growth and soil development are impaired (Mendelssohn 440 

&  Kuhn, 2003, Tong et al., 2013). The effect of sediment supply is also dependent on soil 441 

characteristics, with sediment-poor sites much more sensitive to carbon storage enhancement 442 

via this method than sediment-rich sites (Mudd et al., 2009). Seagrass habitats are particularly 443 

sensitive to sediment manipulation, and loss of biomass due to increased turbidity and 444 

smothering as a result of sediment movement must be considered in the management of these 445 

and adjacent areas (Gonzalez-Correa et al., 2009). Fertilisation and nutrient addition to 446 
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sediments can be beneficial for managed seagrass habitats, but again, threshold effects, which 447 

are often determined in seagrasses by local light availability, sediment redox conditions and 448 

trophic interactions (Peralta et al., 2003, Tol et al., 2016), will need to be considered when 449 

managing for carbon storage. 450 

GHG flux responses to BCE management, similarly to carbon storage, were dependant 451 

on the comparator type used in the study. When natural reference sites were used as the control 452 

comparator, GHG emissions were lower for most management types, though altered hydrology 453 

did not follow this trend. For studies where a degraded control was the comparator, we 454 

observed higher overall GHG emissions for all management types.  The GHG trend for 455 

management types in studies where a degraded comparator was the control were mostly driven 456 

by changes in CH4 flux, while CO2 and N2O fluxes were very similar. A higher CH4 emission 457 

as a consequence of restoration and altered hydrology is most likely related to an increase in 458 

methanogenic processes in the sediment (Livesley &  Andrusiak, 2012, Poffenbarger et al., 459 

2011). Given that most studies only monitored GHG flux over limited timeframes (< 1 year) it 460 

is highly likely that increased soil moisture and inundation lead to an initial increase in 461 

methanogenic activity in the sediment and therefore higher emissions of CH4. Furthermore, 462 

methanotrophic bacterial communities in the soil that consume CH4 under oxic conditions (Fest463 

et al., 2017) will likely start to adapt to the lower oxygen conditions by relying on porewater 464 

exchange in shallow sediment structures such as crab burrows (Conrad &  Rothfuss, 1991, 465 

Nauer et al., 2018). 466 

Interestingly, across management types, sites that were managed had lower CH4 fluxes 467 

compared to reference conditions. This is again likely related to changes in the ratio of 468 

methanogenic and methanotrophic processes in the sediment as a result of increased sediment 469 

moisture levels. In addition, an initial increase in carbon remineralisation via methanogenesis 470 

is likely to take place unless sediment and water salinity levels reach the critical threshold for 471 
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methanogenesis (Poffenbarger et al., 2011, Sela-Adler et al., 2017). This observation 472 

highlights that management aiming to increase carbon stocks in BCEs could unintentionally 473 

lead to increased methane emissions. Methane thus needs to be monitored so that it can be 474 

accounted for in carbon offset programs. Only then can we achieve a more realistic picture of 475 

carbon sequestration in BCEs which considers the ratio between carbon sequestration and the 476 

GHG emissions potentially offsetting or reinforcing blue carbon benefits (Neubauer &  477 

Megonigal, 2015). 478 

Emissions of N2O were similarly elevated at managed sites relative to reference sites. 479 

A variety of different metabolic pathways can lead to changes in N2O fluxes (Butterbach-Bahl480 

et al., 2013, Davidson et al., 2000). Generally, higher N2O emissions due to increased sediment 481 

moisture levels and inundation is most likely related to increased denitrification in the sediment 482 

when water-filled pore spaces increase and oxygen levels decline (Bollmann &  Conrad, 1998, 483 

Linn &  Doran, 1984). Management altering hydrology to increase flow to BCEs therefore may 484 

be conducive to elevated N2O emissions.  In BCE soils and sediments, however, N2O emissions 485 

can originate from multiple processes (nitrifier nitrification, nitrifier denitrification, 486 

denitrification and co-denitrification) which can occur in parallel across the aerobic-anaerobic 487 

sediment continuum (Butterbach-Bahl et al., 2013). Given the overall trend of higher N2O 488 

emissions in response to management activities in BCEs, more research on quantifying these 489 

emissions is needed given the high global warming potential of N2O compared to CO2. 490 

Across all management types, CO2 flux was similar to both reference and degraded 491 

controls. The slightly elevated CO2 emissions for restoration management in studies with 492 

degraded site comparators, which enhanced carbon stocks, may be related to an increase in 493 

sediment microbial processes or a shift in sediment microbial communities in response to a 494 

change in the quality of the organic material that reaches the sediment (Chen et al., 2012, 495 

Schlesinger &  Andrews, 2000). An increase in belowground biomass and litter as a result of 496 
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ecosystem restoration will likely lead to increased organic matter input into the top sediment 497 

layers and anaerobic and aerobic diagenetic processes can lead to higher soil CO2 emissions 498 

(Lloyd &  Taylor, 1994, Schlesinger &  Andrews, 2000). In addition, root respiration can 499 

contribute to increases in sediment CO2 emissions (Elberling et al., 2011, Lloyd &  Taylor, 500 

1994, Raich &  Schlesinger, 1992, Schlesinger &  Andrews, 2000). Again, it is important to 501 

consider these GHG fluxes when monitoring carbon stocks in order to properly understand 502 

carbon budgets in BCEs. 503 

504 

Implications for managing BCEs for climate mitigation 505 

We synthesised, for the first time, data from empirical studies focusing on the 506 

management of carbon and GHG fluxes in BCEs globally and showed that restoration, altered 507 

hydrology and sediment manipulation methodologies have demonstrated potential to positively 508 

influence sequestration of blue carbon by improving various carbon metrics. Additionally, our 509 

analysis provides estimates of the relative consequences to various blue carbon stock metrics 510 

of disturbing BCEs for land-use change or other purposes impacting biomass, sediment or 511 

hydrology. Perhaps more importantly, our meta-analysis demonstrates the low number of 512 

management studies using empirical data, particularly with a robust (i.e. BACI) design 513 

structure. Despite this, there are BCE restoration projects being implemented which state the 514 

management approaches we investigated here as “applicable” and “appropriate” 515 

methodologies (e.g. Verified  Carbon  Standard, 2015). Our data suggest that BCE restoration 516 

may not return carbon stocks to natural levels at the decadal scale. This, combined with the 517 

negative carbon stock response to land-use change, emphasises the importance of prioritising 518 

BCE conservation management options.  In other words, blue carbon management preventing 519 

degradation provides greater dividends than rehabilitating degraded areas.  520 
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Overall, GHG fluxes in BCEs need more attention given that they are not often assessed 521 

and are difficult to quantify, as lateral exchange in these open systems can remove large 522 

amounts of GHGs in dissolved form during high tide and via porewater exchange (Fuentes &  523 

Barr, 2015, Maher et al., 2013, Santos et al., 2019, Sippo et al., 2017).  Studies concentrating 524 

on surface-to-atmosphere GHG exchange will therefore not be able to accurately capture 525 

sediment carbon cycling, a factor which is as of yet largely unaccounted for in BCE monitoring 526 

(but see Maher et al., 2018).  This may in part account for the clear differences detected 527 

between carbon stocks in control and managed sites but not for GHG fluxes in our analysis. A 528 

greater understanding of the factors driving GHG fluxes in BCEs, how to monitor them and 529 

how they influence blue carbon budget estimates is desperately needed, particularly as 530 

management plans will need to consider GHG fluxes in order to ensure more realistic 531 

assessment of their impact on climate change mitigation efforts in BCEs. 532 

Where possible, assessment of managed BCE sites should incorporate multi-year 533 

monitoring designs in order to account for temporal variability in environmental conditions 534 

that affect sediment carbon fluxes. In addition, significant long-term increases in carbon stocks 535 

may only be verifiable after decades of management. The initial condition of the managed site 536 

is also a major determinant of the effectiveness of carbon stock enhancement, and thus should 537 

be thoroughly assessed during the planning phase. This would allow BACI study designs to be 538 

implemented, increasing our ability to more accurately assess the effects of the management 539 

action.  This review of the effect of different management types on blue carbon in mangrove, 540 

saltmarsh and seagrass habitats highlights the scarcity of studies currently available to guide 541 

decision-making, and outlines factors to be accounted for in the monitoring, evaluation and 542 

reporting of blue carbon management plans, order to maximise the potential for BCEs to 543 

contribute to offsetting of global CO2 emissions. As BCEs are increasingly considered as 544 

instrumental for carbon storage and helping offset anthropogenic CO2 emissions, it is important 545 
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that we develop a comprehensive understanding of how different management approaches 546 

influence their ability and capacity to store carbon. We hope that this quantitative analysis 547 

provides the basis for this understanding and will help guide future research into this topic.  In 548 

light of the available data showing the variability in carbon sequestration benefit from different 549 

restorative management approaches (particularly taking into account their relative costs) 550 

compared to the detrimental effects of deforestation and land-use change, and the estimated 551 

time frames to reach natural parity determined in our analysis, we recommend that 1) 552 

conservation management be prioritised in these systems, 2) monitoring of blue carbon 553 

management projects be extended to a minimum of 7 years to account for temporal factors and 554 

3) GHG fluxes in BCEs require more investigation and incorporation into management design 555 

to improve carbon budget estimates.   556 
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