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Abstract 26 

 27 

Radiative feedbacks are known to determine climate sensitivity.  Global top–of-28 

atmosphere radiation correlations with surface temperature performed here show that 29 

decadal variability in surface temperature is also reinforced by strong positive 30 

feedbacks in models, both in the long wave (LW) and short wave (SW), offsetting 31 

much of the Planck radiative damping.  Net top-of-atmosphere feedback is correlated 32 

with the magnitude of decadal temperature variability, particularly in the tropics. This 33 

indicates decadal-timescale radiative reinforcement of surface temperature variability.  34 

Assuming a simple global ocean mixed layer response, the reinforcement is found to 35 

be of a magnitude comparable to that required for typical decadal global scale 36 

anomalies. The magnitude of decadal variability in the tropics is uncorrelated with LW 37 

feedbacks, but it is correlated with total SW feedbacks, which are, in turn, correlated 38 

with tropical SW cloud feedback.  Globally, water vapour/lapse rate, surface albedo 39 

and cloud feedbacks on decadal timescales are, on average, as strong as those operating 40 

under climate change. Together these results suggest that some of the physical 41 

processes responsible for setting the magnitude of global temperature change in the 42 

21st century and climate sensitivity also help set the magnitude of the natural decadal 43 

variability.  Furthermore, a statistically significant correlation exists between climate 44 

sensitivity and decadal variability in the tropics across CMIP5 models, although this is 45 

not apparent in the earlier generation of CMIP3 models.  Thus although the link to 46 

sensitivity is not conclusive, this opens up potential paths to improve our understanding 47 

of climate feedbacks, climate sensitivity and decadal climate variability, and has the 48 

potential to reduce the associated uncertainty.  49 
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1. Introduction 50 

 51 

While further human-forced global average warming appears inevitable (IPCC, 2013; 52 

Peters et al., 2013), the magnitude of projected late 21st century warming (∆TGlobal say) 53 

for a given scenario of future greenhouse gas emissions is uncertain (Meehl et al., 54 

2007a; Collins et al., 2013). Despite major efforts to understand and reduce this 55 

uncertainty (Boucher et al., 2013; Collins et al., 2013), it remains large.  This 56 

complicates decisions relating to climate change adaptation and mitigation, and adds 57 

hundreds of billions of dollars to the associated cost (Hope, 2015).   58 

 59 

Future climate will also depend on natural decadal climate variability (DCV; Hawkins 60 

and Sutton, 2009, 2011; Kirtman et al., 2013; Power et al. 2006; Deser et al., 2012) -- 61 

and includes processes such as the Interdecadal Pacific Oscillation (Power et al. 1999; 62 

2006; Folland et al. 1999; Kosaka and Xie, 2013). Despite the importance of this 63 

internally-driven DCV to climate and life on earth, relatively little is known about the 64 

physical processes underpinning it and the factors that determine its magnitude (Liu et 65 

al., 2012).  A key feature of coupled model DCV is that the range in models is enormous.  66 

The standard deviation (SD) of global decadal variability (SDG_10y) differs by a factor 67 

of more than four across Coupled Model Intercomparison Project phase 5 (CMIP5, 68 

Taylor et al., 2012) models – see below.  What causes this range?    69 

 70 

Differences in the El Niño-Southern Oscillation (ENSO) of course will play a role in 71 

decadal variability.  Middlemas and Clement (2016) found around half the variance in 72 

the frequency of significant warming/cooling decades per century across CMIP5 73 

models could be explained by the magnitude of decadal variations in their Nino3 sea 74 
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surface temperatures (SST).  Importantly ENSO variability is itself associated with 75 

strong radiative feedbacks, both regionally (Bellenger et al., 2014; Li et al., 2015) and 76 

globally (Colman and Power, 2010; Colman and Hanson, 2016), suggesting it has the 77 

potential for a significant role in stochastic radiative forcing and decadal radiative 78 

feedback.   79 

 80 

Although coupled ocean/atmosphere processes such as ENSO likely play a role in 81 

determining the magnitude of DCV, they are unlikely to be the whole story.  It is notable 82 

that ocean models with only mixed layer physics can also show strong variability 83 

(Middlemas and Clement, 2016; Xie et al., 2016).  Thus, although fully coupled models, 84 

as expected, do show larger variances across most timescales in both radiation and 85 

global temperature (Xie et al., 2016), the differences are relatively small at decadal and 86 

longer timescales.  For example, there is only around 5% difference in the decadal SD 87 

of global temperature in mixed layer/fully coupled pair of models considered by 88 

Middlemas and Clement (2016).  Consistent with this, a review by Liu (2012) concludes 89 

that processes involving ocean/atmosphere dynamical feedbacks play only a relatively 90 

minor role globally, although they may be important regionally (e.g. in the North 91 

Atlantic (Chen and Tung, 2014)).  What other processes may be critical? 92 

 93 

Following Roe (2009), radiative feedbacks may play a significant role in determining 94 

decadal variability of surface temperature.  Xie et al. (2016) infer that short wave (SW) 95 

stochastic radiative forcing plays a potentially important role in DCV as they find it 96 

typically leads temperature by around one year.  They find, however, that the 97 

correlation of total global averaged radiation with global surface temperature on 98 

decadal timescales is relatively weak – peaking at around -0.4 at a lag of around 2 years, 99 
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due to strongly offsetting long wave (LW) and SW responses.  They deduce a net 100 

radiative feedback under variability that peaks at only around half the magnitude of the 101 

climate change feedback (-0.5W/m2/K versus ~ -1 W/m2/K), arguing that differences in 102 

temperature and radiation patterns drive a different feedback response to that of climate 103 

change (see also Zhou et al., 2015).   104 

 105 

The Xie et al. (2016) analysis does not clarify the reasons underlying the very large 106 

range in variability in models, however.  Nor does it preclude an important role for 107 

radiative feedback in amplifying DCV, given such feedbacks oppose what would 108 

otherwise have been a strongly damping Planck1 cooling term, analogous to the case 109 

under climate change (Bony et al., 2006; Roe, 2009).  Indeed the weaker net negative 110 

feedback noted by Xie et al. (2016) indicate there are as strong or stronger positive 111 

feedbacks than under climate change – as noted previously by Colman and Hanson 112 

(2013).  Furthermore the small total feedbacks identified by Xie et al. (2016) are the 113 

net result of very strong, but offsetting LW (R=-0.8) and SW (R=+0.7) correlations, 114 

confirming that strong radiative feedback processes are indeed operating in these 115 

models.  Consistent with this view, a coupled model run with suppressed water vapour 116 

feedback, was found to have significantly lower interannual variability (Hall and 117 

Manabe, 1999).   118 

 119 

                                                 
1   The Planck cooling refers to the hypothetical TOA LW radiative cooling that would take place for 

the climate system under a given surface warming if the atmosphere warmed uniformly with height at 

the same rate the surface temperature change (i.e. no lapse rate changes), and there were no changes to 

other radiatively sensitive parameters in the atmosphere/surface, such as to water vapour, clouds or 

surface albedo.  The Planck cooling is not strictly a climate ‘feedback’ but instead represents the 

radiative damping of the climate system that would occur in the absence of feedbacks (Bony et al., 

2006).  Here it is listed in tables as a ‘feedback’ for simplicity of presentation. 
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Considering the radiative contributions to decadal-long warming trends in CMIP5 120 

models, Brown et al. (2014) concluded that typically around half the global average 121 

warming may be attributable to the net top of atmosphere radiative feedback (with the 122 

SW dominating the response) – although with large variation between decades and an 123 

uncertain role for LW feedback.   The remaining global warming was associated with 124 

non radiative-feedback related processes, such as redistribution of heat within the 125 

climate system (Brown et al., 2014)  126 

 127 

The preceding discussion indicates that significant uncertainties remain in the role of 128 

radiative feedback (including the relative roles of LW/SW) in the magnitude and inter-129 

model range of DCV, both globally and in the tropics.  Understanding the causes of 130 

this large range is not simply of importance for evaluating and improving models – but 131 

also for understanding recent climate trends and the role of radiative reinforcement, 132 

and how ‘typical’ this may be (e.g. Brown et al., 2014).  Recent findings (Andrews et 133 

al., 2015; Zhou et al., 2016; Gregory and Andrews, 2016) suggest that large scale cloud 134 

redistributions, in the recent period have been responsible for global radiative 135 

responses which have suppressed warming, inconsistent with long term climate change 136 

feedbacks, or even typical decadal feedbacks (Brown et al., 2014).  Since tropical 137 

variability has been identified as an important driver of global-scale temperature 138 

variability (Kosaka and Xie 2013; Dai et al. 2015; Meehl et al. 2012), a particular focus 139 

will be on tropical decadal variability, and the associated radiative feedbacks.  If 140 

radiative feedbacks play a key role in amplifying decadal temperature variability then 141 

there arises the important question of possible links between the magnitude of DCV 142 

and climate change.  143 

 144 
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This paper addresses the following questions: 145 

 How large is the spread in DCV in models, globally and in the tropics/extra-146 

tropics? How large is the influence of ENSO variability on this range? 147 

 How strong are the LW/SW and net decadal radiative feedbacks in models on 148 

decadal timescales? Are these correlated with the magnitude of the variability, 149 

and are they of a sufficient magnitude to ‘explain’ the range?  Which feedbacks 150 

are most important globally and in the tropics/extra-tropics? 151 

 How large are climate feedbacks under DCV compared with climate change? 152 

 Are there links between the magnitude of DCV, either globally or in the tropics, 153 

with either temperature change projected over the next century or with climate 154 

sensitivity? 155 

 156 

The paper is laid out as follows:  The methodologies for calculation of variability and 157 

feedback, and the models used are described in Section 2.  Section 3 contains results 158 

and discussion, with conclusions in Section 4.   159 

 160 

2. Analysis of variability and radiative feedbacks  161 

Up to 41 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 162 

(Taylor et al., 2012) archive were used for the calculation of variability and feedbacks 163 

from pre-industrial runs.  The full list used is given in supplementary material Table S1.  164 

200 years of data were used for all models except for MIROC4h (100 years available).  165 

Not all models provided the fields needed for the calculation of all top of atmosphere 166 

(TOA) radiative feedbacks.  Model data was first re-gridded to a common 2.5° latitude/ 167 

longitude grid; global/tropical/extra-tropical annual means calculated were then 168 

detrended by removal of a linear fit, to eliminate any drift.  For most models this had 169 



 8 

little impact on calculated variability.  Decadal SDs were calculated following 170 

application of a 10 year running mean.  Eighteen models from the Coupled Model 171 

Intercomparison Project Phase 3 (Meehl et al., 2007b) were also used.  These are listed 172 

in Table S2 of the supplementary material.  Equilibrium climate sensitivity (ECS) 173 

values were obtained from Randall et al. (2007) and Flato et al. (2013) for CMIP3 and 174 

CMIP5 respectively. 175 

 176 

Decadal (or interannual) LW/SW/Net radiative feedbacks were calculated as follows.  177 

For the interannual case, global annual means were calculated for surface temperature 178 

and for TOA LW, SW and net radiation (e.g. see Forster and Gregory, 2006).  The (200) 179 

radiation values were then  regressed against the corresponding surface temperatures, 180 

to give the global feedback.  For tropical feedback, the calculation was repeated, but 181 

with averages for both TOA radiation and surface temperatures calculated over the 182 

tropics only.  Decadal feedbacks were calculated using an identical approach, following 183 

the application of a 10-year running mean to the radiation and temperature fields.   Error 184 

bars shown throughout were determined from the 80% confidence interval from 185 

standard regression. More sophisticated fitting can be applied using a Bayesian 186 

approach which samples the uncertainty range in the data point.  This approach has 187 

been found to provide similar confidence spread for these feedbacks (Colman and 188 

Hanson, 2013).  We show 80% rather than, say, 95% confidence range in these plots, 189 

as it is illustrative of the uncertainty in calculation for the feedbacks and how that 190 

varies/differs between models and feedbacks, but avoids the visual clutter of showing 191 

larger error bars. 192 

 193 
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Individual process feedbacks (Table 2) were calculated using "radiative kernels" 194 

(Soden et al., 2008; Shell et al., 2008).  The kernels used here were derived from the 195 

BMRC/CAWCR model (see Soden et al., 2008) and vary as a function of month, 196 

latitude, and (apart from surface albedo) atmospheric level.  For the preindustrial runs, 197 

relevant fields were first averaged into decadal monthly means, then the radiative 198 

kernel applied to pairs of corresponding months between adjacent decades. Decadal 199 

annual means were then calculated, and global or tropical averages regressed against 200 

corresponding average temperature changes. Details of the methodology are described 201 

in Colman and Hanson (2013).  For the calculation of climate change feedbacks, 202 

kernels were applied to pairs of months selected from decades beginning 2010 and 203 

2090. After calculation of annual means, feedbacks were then calculated by 204 

normalising radiation change by global mean surface air temperature change.   205 

 206 

 ‘Scaled’ decadal feedbacks (see Table 2 and associated discussion) were calculated 207 

following Armour et al. (2013) and Colman and Hanson (2016).  The assumption here 208 

is that feedbacks are (to first order) invariant for a given geographic location – i.e. the 209 

same locally for both climate change and DCV.  To calculate the implied decadal global 210 

or tropical feedback, local feedbacks obtained from kernel calculations under RCP8.5 211 

were ‘scaled’ by the relative surface temperature variations that occur under DCV.  212 

Details on the approach are provided in Colman and Hanson (2016), and it is discussed 213 

further below.  An important caveat is that some processes will not be expected to be 214 

only locally temperature dependent.  For example Zhou et al. (2016) argue that East 215 

Pacific tropical cloud changes are affected by changes in West Pacific temperatures 216 

through changes in free tropospheric temperatures affecting inversion strength. 217 

 218 
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3. Results and discussion 219 

 220 

Magnitude and pattern of decadal variability in models. 221 

Figure 1 shows the SD of decadal global mean variability in surface air temperature in 222 

the CMIP5 models, ordered from lowest to highest.   Values of SD range from 0.023 to 223 

0.13 K.  The range from the earlier CMIP3 models (Meehl et al., 2007b) was 224 

comparable: from 0.021 to 0.11 K (not shown).   The processes resulting in this range 225 

remain unclear (Liu et al., 2012).  For comparison, an observational estimate from 226 

Middlemas and Clement (2016) of DCV, obtained by removing estimates of forced 227 

changes to the GISTEMP data set (Hansen et al., 2010), is around 0.078K, i.e. towards 228 

the top of the model range (Fig. 1), therefore most models underestimate DCV (see also 229 

discussion in Laepple and Huybers, 2014; Fredrisken and Rypdal, 2016). 230 

 231 

What does DCV look like spatially in the models and how does it compare to the 232 

patterns of climate change?  Figure 2a shows the multi-model mean (MMM) of the 233 

change in local surface air temperature (for 2081-2100 relative to 1986-2005) under 234 

the RCP8.5 emissions scenario (van Vuuren et al., 2011).   Figure 2b shows point-by-235 

point regression of temperature against tropical mean temperature from the pre-236 

industrial experiments (after application of a 10 year running mean) – i.e. the MMM 237 

DCV pattern relative to tropical mean temperature change (30° N to 30°S).  Stippling 238 

indicates >70% of models agree on the sign of the change, which indicates statistical 239 

significance at the 95% level under the assumption of model independence (see 240 

supplementary material). Figure 2b shows a surprisingly high degree of coherence in 241 

internally generated DCV in T with variability in T averaged over the tropics.  In the 242 

vast majority of locations, the models tend to warm when the tropics are warm, with 243 
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out-of-phase temperature variations restricted to a relatively small region in the North 244 

Pacific.  The spatial correlation coefficient between the two plots is 0.24.  Figure 2b is 245 

overall consistent in pattern with findings elsewhere from regression of local 246 

temperature against decadal global temperature, or from clustering of warming/cooling 247 

decades, suggesting that models reproduce IPO-like SST patterns under unforced DCV 248 

(Middlemas and Clement, 2016; Brown et al., 2015; Power et al., 2016).   249 

 250 

Decadal variability and tropical Pacific variability. 251 

How important is ENSO variability for DCV?  Figure 3 shows a plot of global and 252 

tropical variability against decadal NINO3.4 variability.  Very little global variance can 253 

be explained by NINO3.4 (in agreement with the findings of Middlemas and Clement, 254 

2016), but this  increases to around 1/3 when only the tropics are considered.  Other 255 

ENSO indices (NINO3, NINO4) give similar results to those of Fig. 3 (not shown).  256 

Note, however that all models produce NINO3.4 decadal SD below the estimated 257 

observational value from Middlemas and Clement (2016) of around 0.3K, so models 258 

may be underrepresenting the influence of ENSO on decadal variability.   This view is 259 

consistent with Kociuba and Power (2015), which showed that models seemed to 260 

underestimate tropical DCV because of deficiencies in simulated ENSO characteristics.   261 

For interannual variability, the current analysis gives, as expected, much higher 262 

explained variances of 38% and 48% for model global and tropical variability 263 

magnitudes respectively, consistent with strong ENSO influence on interannual 264 

variability (e.g. Pan and Oort, 1983), but with decadal variations being less strongly 265 

associated with dynamical ocean/atmosphere feedback processes (Liu et al., 2012).   266 

 267 

Decadal radiative feedbacks in models. 268 
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Which global and tropical mean TOA radiative feedbacks are associated with decadal 269 

variability?  Before examining individual feedbacks, the total LW, SW and net 270 

radiative feedbacks are considered.  These were determined from calculating 20 ten-271 

year averages for each model using their pre-industrial runs, then regressing net TOA 272 

radiative variations against global average surface air temperature (see supplementary 273 

Fig. S1 for an example). It is found (consistent with Xie et al., 2016) that strong 274 

correlations occur for both LW and SW with global mean temperature, but that the 275 

correlations are weaker when net feedback is considered, due to the offsetting nature 276 

of the LW/SW (e.g. supplementary Fig. S1). 277 

 278 

The value of multi-model mean DCV-related global, tropical and extra-tropical LW, 279 

SW and Net feedbacks are given in Table 1.  The inter-model SD is shown in brackets.  280 

Table 1 also shows the decadal LW feedback with the Planck term removed. 281 

 282 

It is immediately apparent from Table 1 that setting aside the Planck cooling (see 283 

below), decadal feedbacks are strong and positive in both LW and SW, and make a 284 

close-to-equal contribution to positive feedback globally. Including the Planck cooling 285 

results in a ‘total response’ MMM radiative feedback of only -0.24 W/m2/K, close to 286 

radiative neutrality, and with significantly less radiative damping than for forced 287 

climate change (Bony et al., 2006; Flato et al., 2013).  Interestingly, the MMM extra-288 

tropical LW feedback is less radiatively damping than tropical, despite the low latitude 289 

maximum of the dominant water vapour feedback (Colman and Hanson, 2016).  290 

Because of this the extra-tropics play a larger role than the tropics in setting the overall 291 

strength of the global feedback.  This is consistent with Brown et al. (2015) (their Fig. 292 
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5) that the extra-tropics are important for explaining spread in radiative contributions 293 

to decadal warming/cooling trends. 294 

 295 

Interannual feedbacks (shown in Table 1) tell a similar story, i.e. there are positive LW 296 

and SW feedbacks in both the tropics and extra-tropics.   On interannual timescales, 297 

however, total radiative feedback is more damping  than for DCV (by around 0.5 298 

W/m2/K), suggesting radiative feedbacks play a lesser role in amplifying variability at 299 

interannual compared with decadal timescales (see also Forster, 2016).  Furthermore, 300 

ocean heat capacity is large, so the radiative heating would not change the climate 301 

system temperature much on interannual timescales.  This is noted here but will not be 302 

further quantified in this paper. 303 

 304 

How do decadal radiative feedbacks relate to the magnitude of model variability?  305 

Global (tropical) DCV is plotted against total global (tropical) TOA radiative feedback 306 

across the models in Fig. 4.   Error bars show 80% confidence limits from standard 307 

regression of the radiative feedback magnitude (discussed in Section 2 above) or from 308 

the confidence limits in estimating decadal temperature SD from the 200-year pre-309 

industrial experiments (e.g. Sheskin, 2016).  A modest positive correlation (R=0.37) is 310 

apparent for global values, stronger (R=0.49) for the tropics-only case (i.e. for tropical 311 

DCV regressed against tropical radiation).  Both regressions are statistically significant 312 

at the 95% level.  This implies that models with stronger DCV, and particularly tropical 313 

variability, tend to have stronger positive (reinforcing) net TOA radiative feedback.  314 

By contrast, the equivalent regressions for interannual variability (not shown) are not 315 

statistically significant. 316 

 317 
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Note that two models have net positive feedback at decadal timescales in Fig. 4, raising 318 

the issue of their stability under variability.  There are two important aspects here. 319 

Firstly, when considered at the 95% level only one model (MIROC-ESM) remains 320 

statistically greater than zero (not shown) – so further study is needed to confirm that 321 

its feedback is indeed positive.  Secondly, even if at decadal timescales a model has no 322 

net radiative damping (or a small positive radiative feedback) this does not imply that 323 

this holds at all timescales – for example there are no positive feedback models at 324 

interannual timescales even at the 80% level (not shown). Physical damping factors 325 

that operate between different timescales – e.g. involving deep exchange of heat in the 326 

ocean, or involving negative feedbacks which result from differing surface temperature 327 

variability patterns, must act to stabilise the long term response. So even if the climate 328 

system were to gain energy at decadal timescales, it must lose energy to other 329 

timescales.  Such interactions are likely complex, and investigation of them lies beyond 330 

the scope of this paper. 331 

 332 

Comparing feedback processes under decadal variability and climate change. 333 

To understand what sets the magnitude of the SW/LW feedbacks we must examine the 334 

contributions from differing processes.  Individual (global) MMM decadal feedbacks 335 

for surface temperature (Planck), water vapour, lapse rate, surface albedo and clouds, 336 

along with their inter-model SD, are provided in Table 2. Also shown, for comparison, 337 

are global climate change feedbacks.   The bottom two rows show the net feedback 338 

calculated by summing the individual feedback terms, and can be compared with the 339 

total feedbacks calculated by straight regression of TOA net SW/LW radiation.  It can 340 

be seen that the numbers are close, although not exact.  Uncertainty of kernel 341 

calculations (Soden et al., 2008) will play some role in this difference, but differences 342 
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arise from the uncertainties inherent in the estimation of decadal feedbacks (especially 343 

clouds) from the (only) 200 year timeseries. Given the independent methods of the two 344 

calculations, however, the overall agreement bolsters confidence in the calculations of 345 

the individual feedback terms. 346 

 347 

The source of the strong decadal feedbacks can be seen in Table 2.  LW and SW water 348 

vapour feedbacks are, on average, comparable to those of climate change (LW 349 

component around 20% weaker).  Together these provide about 60% of the total 350 

positive feedback.  Decadal lapse rate feedback is close to neutral, compared to a 351 

negative climate change feedback of -0.74 W/m2/K, and mean that the combined water 352 

vapour/lapse rate feedback contributes a similar fraction of overall positive feedback 353 

at decadal timescales as under forced climate change. For clouds, the MMM SW cloud 354 

feedbacks are comparable for DCV and climate change.  The DCV LW cloud feedback 355 

is a little weaker than the corresponding climate change feedback (although still 356 

positive).  Perhaps surprisingly, the surface albedo feedback is stronger in the decadal 357 

case.  The inter-model spread of the decadal albedo feedback is very large, and models 358 

show an extremely large range in the coverage of sea ice in their pre-industrial climate 359 

(Hobbs et al., 2016), so at least part of the spread may arise from consequent 360 

differences in sea ice response.  We hope to investigate this in a future study. 361 

 362 

The reasons for these overall similarities in climate change/decadal feedback strength 363 

are not immediately clear, but the similarities in the temperature response to global or 364 

tropical temperature change under climate change and DCV (Fig. 2) may imply similar 365 

radiative feedback responses.   Recent results (Armour et al., 2013) have found that 366 

treating feedbacks as ‘locally unchanging’ (that is, fixed in strength at particular 367 
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locations, with the global feedback strength then dependent on the contribution of local 368 

feedbacks) can explain the evolution of global feedbacks in long climate change 369 

experiments from changes in the global surface temperature pattern.  Colman and 370 

Hanson (2016) performed calculations for decadal feedbacks following this approach 371 

based on ‘local’ feedbacks derived from RCP8.5 experiments.  The MMM strength 372 

(and intermodal variation) of feedbacks from the decadal Planck response, LW and SW 373 

water vapour and surface albedo feedbacks (Table 2) are indeed recovered from the 374 

scaling.  LW cloud feedback is also reasonably reproduced, but lapse rate and SW 375 

cloud feedbacks show significant differences.  These results suggest that the patterns 376 

of warming in Fig. 2 may be ‘similar enough’ for common processes to be operating 377 

for most radiative feedbacks under both climate change and decadal variability 378 

(Colman and Hanson, 2016). 379 

 380 

Further evidence of the similarities in processes between feedbacks operating under 381 

climate change and DCV come from: (i) common patterns of vertical contributions to 382 

water vapour and lapse rate feedbacks (Colman and Power, 2010; Colman and Hanson; 383 

2013); (ii) a water vapour feedback that is consistent with unchanged relative humidity 384 

(Colman and Hanson, 2013); and (iii) an inverse relationship between lapse rate and 385 

(LW) water vapour feedback (Colman and Hanson, 2013).   Correlations have also 386 

been found between the strength of interannual and climate change net cloud feedback 387 

across models (Zhou et al., 2015).  Finally, global variability on interannual timescales 388 

has also been shown to be reduced when global radiative feedbacks are suppressed 389 

(Hall and Manabe, 1999; Hall 2004), and ENSO-associated variability reduced when 390 

cloud feedbacks are suppressed (Ying and Huang, 2016; Radel et al., 2016).  Overall 391 

then, there is evidence for strong positive radiative feedbacks operating in models as 392 
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well as similarities in the feedback strengths and structures between decadal (and 393 

interannual) variability and climate change.   394 

 395 

But are inter-model decadal feedback differences enough to explain (or at least 396 

contribute substantially to) the range in DCV?  Table 2 shows a MMM positive 397 

feedback of around +2.5 W/m2/K, with a range of ~2 W/m2/K – see Fig. 4.  This 398 

variation comes from the terms offsetting the Planck cooling; as the latter is tightly 399 

clustered around -2.95 W/m2/K with relatively small SD across models. Assuming the 400 

simplest possible (zero dimensional) feedback reinforcement of temperature deviations 401 

(see supplementary material) under a global ΔT of 0.05K (MMM SD of DCV – Fig. 1), 402 

a positive feedback of 2 W/m2/K is sufficient to provide reinforcing warming of 403 

~0.075K to a global mix-layer of 100m depth on decadal timescales.  There will be 404 

some sensitivity of this warming figure to assumptions about factors like the mixed 405 

layer depth, but the figure chosen here is consistent with those chosen elsewhere in 406 

decade timescale changes under global warming (Geoffroy et al., 2012; Brown et al., 407 

2014).  This temperature change is the same order as the SD of temperature variation 408 

itself and provides prima facie evidence that positive feedbacks in the models can 409 

induce temperature excursions of the appropriate magnitude for DCV (consistent with 410 

the results of Brown et al., 2014).   411 

 412 

We would expect several factors to contribute to the magnitude of variability that are 413 

not considered here. Theoretical arguments (e.g. Roe, 2009) indicate variability should 414 

increase with the magnitude of stochastic forcing (such as from ENSO variability, 415 

Trenberth et al., 2002 or from short timescale cloud variations, Trenberth et al., 2014), 416 

and decrease with ocean thermal inertia and radiative damping.  For example, CMIP5 417 
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models show a broad range of effective ocean depth, on climate change timescales at 418 

least (Geoffroy et al., 2012), and are likely to do so on interannual and decadal 419 

timescales.   However in the present study we only consider the influence of the 420 

radiative damping term.  A consideration of the roles of oceanic mixing and magnitude 421 

of stochastic forcing in determining model interannual/decadal variability is to be the 422 

subject of a follow up study. 423 

 424 

It is known that clouds and SW cloud feedbacks in particular are responsible for much 425 

of the range in total feedback under climate change (Bony and Dufresne, 2005; 426 

Boucher et al., 2013).  What individual feedbacks are most important for the range in 427 

decadal net feedback?   The separate variation of tropical SW and LW total decadal 428 

feedback against tropical DCV (Fig 5.) reveals no relationship between variability and 429 

LW feedback, but a strong (and statistically significant at the 95% level) positive 430 

correlation in the SW (R=0.58).  The situation is qualitatively similar at global scales, 431 

although the SW correlation with variability is weaker (R=0.33) and not statistically 432 

significant in this case (not shown).  Therefore, although LW feedback plays a roughly 433 

equal role with the SW in the overall amplification of the variability of DCV, the SW 434 

is primarily responsible for the differing responses in net feedback between models. 435 

 436 

 The total SW tropical feedbacks is in turn correlated with strength of the SW cloud 437 

feedbacks in models (R=0.56, Fig. 6).  This provides evidence that differences in cloud 438 

responses on decadal timescales may provide an important mechanism for net tropical 439 

variability, and echoes the role that SW cloud responses – particularly in the tropics –  440 

play in determining climate change sensitivity (Bony and Dufresne, 2005, Andrews et 441 

al., 2012; Webb et al., 2015; Zelinka et al., 2013).  A statistically significant (at the 442 
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95% level) offsetting relationship is also apparent between total LW and SW feedbacks 443 

both for the tropics and globally: Fig. 7 (R=-0.41, and R=-0.56, respectively).  This 444 

means that the net feedback range is smaller than it would otherwise be, since stronger 445 

(positive) feedback in the SW implies weaker (negative) feedback in the LW.  The 446 

correlations found here are suggestive of an important role of radiative feedbacks and 447 

in particular of tropical clouds in decadal timescale tropical variability, but do not 448 

conclusively establish it. Furthermore, there is no significant negative correlation 449 

between LW/SW cloud feedbacks themselves across models (not shown), so the causes 450 

of the inverse LW/SW radiative feedback relationship remain unclear and require 451 

further investigation. 452 

 453 

Is there a link between decadal temperature variability and climate change? 454 

How do these results relate to climate change?    Given the widespread coherence of 455 

DCV in surface temperature over the globe with tropical DCV in surface temperature 456 

(Fig. 2b), and the apparent role of radiative feedbacks in tropical DCV discussed above, 457 

we hypothesize that model-to-model differences in the magnitude of internal DCV 458 

might be related to model-to-model differences in the magnitude of ∆TGlobal. This is 459 

confirmed for the CMIP5 models in Fig. 8a, which shows that ∆TGlobal and the SD of 460 

DCV in TTropics (SDT_10y) are linearly correlated, with a correlation coefficient of 0.60 461 

(Table 3), which is statistically significant at the 95% confidence level. The correlation 462 

coefficient increases to 0.73 if attention is restricted to ∆TTropics, the projected change 463 

in tropical temperature (Fig. 8b).  464 

 465 

The sensitivity of climate change to imposed anthropogenic forcing can also be 466 

measured using the Equilibrium Climate Sensitivity (ECS) and the Transient Climate 467 
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Response (TCR) indices (Collins et al., 2013). The ECS is plotted against ∆TGlobal in 468 

Fig. 8c, showing a very high correlation coefficient. TCR is, as expected, strongly 469 

correlated with ECS, although TCR is less closely correlated with∆TGlobal than is ECS 470 

(not shown).  These findings are consistent with the results of Gregory et al. (2015) 471 

and Grose et al. (2016).  The relationships between SDT_10y and all of ∆TGlobal, ECS 472 

and the TCR are consistent in the sense that the degree of warming and the sensitivity 473 

tends to be larger in models with larger values of SDT_10y.  474 

 475 

Correlating SDT_10y against ECS in CMIP5 models (Fig. 9a) reveals a statistically 476 

significant correlation, with SDT_10y explaining nearly half the variance in ECS.  A 477 

statistically significant correlation also holds between global SD10y and ECS, but it is 478 

weaker (R=0.42) (not shown).   So the CMIP5 models suggest there is indeed a link 479 

between SDT_10y and climate sensitivity. 480 

 481 

As a further test we examined the same issue in CMIP3 models.  Despite the 482 

relationships found in CMIP5, no such relationships (e.g. between ECS and SDT_10y) 483 

are found for the earlier set of CMIP3 models (Fig. 9b).   This does not automatically 484 

rule out a relationship between DCV and ECS: CMIP5 models show improvement, 485 

including in climate variability, over CMIP3 models (Flato et al., 2013).  For example 486 

biases in the tropical Pacific mean state are reduced and ENSO related variability better 487 

represented (Flato et al., 2013; Bellenger et al., 2014).  However there is ‘no quantum 488 

leap in ENSO performance’ (Bellenger et al., 2014), nor is there an overall reduction 489 

in the range of DCV in CMIP5 compared with CMIP3 (see above).  Therefore it 490 

remains unclear whether the links between DCV and ECS/∆TGlobal revealed in CMIP5 491 

models are robust.  It will be of interest to explore possible decadal variability/ECS 492 
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correlations within the upcoming CMIP6 group of models, particularly if, as expected, 493 

ENSO-related variability is further improved and tropical biases further reduced.   The 494 

present results suggest, at the very least, that further research is warranted in this area.  495 

 496 

 497 

4. Conclusions 498 

 499 

Ongoing uncertainty in climate change projections arise from the range of model ECS, 500 

and this range has not narrowed in the last two decades (Flato et al., 2013).   At the 501 

same time, DCV varies by at least a factor of 4 across CMIP5 models (and varied by a 502 

similar range in CMIP3).  Understanding the causes of both of these ranges are critical 503 

tasks in climate change science.   504 

 505 

The present results provide evidence that global scale radiative feedbacks are playing 506 

an important role in the magnitude of global and tropical DCV in CMIP5 models. Both 507 

SW and LW feedbacks are positive globally, and LW feedback  is as important as the 508 

SW in setting the magnitude of the overall feedback.  The differences between total 509 

feedback globally in models are primarily due to the SW component.  The strength of 510 

this feedback is, in turn, correlated with SW cloud feedback, and this is particularly 511 

strong in the tropics.  ENSO related variability certainly plays a role in the spread, with 512 

results here suggesting around 1/3 of the tropical variance is related to central Pacific 513 

DCV – although very little global spread is explained.  This is consistent with findings 514 

elsewhere that deficiencies in representation of ENSO have a substantial impact on 515 

tropical temperature DCV (Kociuba and Power, 2014) 516 

 517 
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SW/LW feedbacks also tend to offset one another both in the tropics and globally.  This 518 

suggests related but opposing SW/LW processes, particularly from clouds.  However, 519 

puzzlingly, regressions across models between the strength of the SW/LW cloud 520 

feedbacks do not show significant anti-correlations.  It should be noted that clouds 521 

show high stochastic variability, and that long periods may be required to accurately 522 

estimate cloud feedbacks (Colman and Hanson, 2013).  Further research is needed to 523 

clarify the role of clouds in decadal feedback spread, and in the offsetting SW/LW 524 

components.   525 

 526 

Most radiative feedback components show comparable overall strength in the MMM 527 

on decadal and climate change timescales (except most noticeably for global lapse rate). 528 

Furthermore the global MMM decadal feedback strength can, for all components 529 

except lapse rate and SW cloud, be recovered simply by scaling the climate change 530 

feedback by the relative temperature warming found in DCV per degree of global 531 

temperature change.   A simple zero-dimensional calculation of decadal heating 532 

resulting from the positive feedback shows the magnitude of positive feedbacks in 533 

models can induce temperature reinforcement of the order of 0.075K in a 100m deep 534 

ocean on decadal timescales, the same magnitude of the decadal temperature deviations 535 

themselves.     536 

 537 

Taken together this evidence suggests that radiative feedbacks operating on decadal 538 

timescales may shed critical light on the processes controlling the magnitude of 539 

projected changes.  It is suggestive that for the CMIP5 models a correlation exists 540 

between ECS and DCV, and this correlation is particularly strong for tropical 541 

variability, although earlier CMIP3 models, does not reproduce this relationship.  The 542 
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CMIP3 results lower the confidence in the existence of a link between the magnitude 543 

of DCV and climate sensitivity, but does not preclude the possibility, especially since 544 

CMIP5 models are superior to CMIP3 models in many respects (Flato et al., 2013).  It 545 

will be important to retest our key hypothesis with the next generation of models.  546 

Further research on decadal radiative feedbacks, their role in variability, and their 547 

relationship with climate change feedbacks is needed.  548 

549 
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Tables 743 

 744 

Table 1: Global, tropical (30°N to 30°S) and extra-tropical (poleward of 30°) multi-745 

model mean LW, SW and net feedbacks under decadal and interannual variability.  746 

Also shown is the LW with the Planck cooling term removed.  Units are W/m2/K.  747 

Feedbacks are calculated by regressing area mean TOA radiation changes against 748 

corresponding area mean temperature.  Numbers in brackets represent 1 SD of model 749 

spread.  750 

 751 

  Global Tropics Extra-tropics 

Decadal LW 

SW 

Total 

LW (No Planck) 

-1.52 (0.32) 

1.28 (0.47) 

-0.24 (0.40) 

1.39 (0.28) 

-2.07 (0.72) 

1.58 (0.93) 

-0.48 (0.88) 

1.36 (0.62) 

-0.90 (0.27) 

0.88 (0.35) 

-0.02 (0.21) 

1.51 (0.39) 

Interannual LW 

SW 

Total 

-1.57 (0.44) 

0.81 (0.64) 

-0.76 (0.62) 

-2.49 (0.80) 

1.56 (0.98) 

-0.93 (0.94) 

-0.89 (0.23) 

0.71 (0.29) 

-0.18 (0.31) 

  752 



 32 

Table 2: Multi-model mean decadal and climate change global feedbacks.  Units are 753 

W/m2/K.  Feedbacks shown are surface temperature (Ts), LW/SW water vapour (q), 754 

lapse rate (LR), surface albedo (a) and LW/SW cloud (C).  Rightmost column shows 755 

feedbacks derived by scaling local climate change feedback strength by the ratio of 756 

decadal local temperature change per degree of global temperature rise to that from 757 

climate change (Colman and Hanson, 2016).  Bottom two rows show the sum of LW 758 

and SW feedbacks for decadal and climate change feedbacks (for comparison with 759 

results in Table 1). 760 

 761 

Feedback Decadal 

Climate 

Change 

Decadal derived 

from scaled 

climate change 

Ts -2.94 (0.13) -3.07 (0.09) -2.83 (0.21) 

q (LW) 1.42 (0.49) 1.75 (0.19) 1.43 (0.38) 

q (SW) 0.22 (0.05) 0.26 (0.04) 0.26 (0.06) 

LR 0.0 (0.48) -0.74 (0.23) -0.53 (0.40) 

a 0.78 (0.38) 0.42 (0.11) 0.70 (0.26) 

C (SW) 0.20 (0.52) 0.19 (0.43) -0.26 (0.41) 

C (LW) 0.23 (0.30) 0.34 (0.20) 0.34 (0.43) 

Sum of SW 1.20 0.87 

Sum of LW -1.29 -1.72 

Sum of LW (No Planck) 1.65 1.35 

 762 

 763 

  764 
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Table 3: Summary of correlation coefficients and associated information among key 765 

variables.  Numbers in bold indicate statistical significance at the 5% level.  Symbols 766 

are as follows: ΔTG/ΔTT, global/tropical surface temperature change over the 20th 767 

century under RCP8.5; σT (10yr) SD of decadal global variability in models; ECS, 768 

equilibrium climate sensitivity. 769 

 770 

 ΔTG ΔTT σT (10yr) ECS 

ΔTG 1 0.89 0.60 0.95 

ΔTT  1 0.73 0.89 

σT (10yr)   1 0.71 

ECS    1 

 771 

 772 

773 
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Figures 774 

 775 

Figure 1: Decadal global SD of surface temperature for the CMIP5 models (K), listed 776 

in order of increasing SD.   Names of models (and the corresponding modelling 777 

institutions) are listed in Table S1.  Error bars indicate 80% confidence range (Sheskin, 778 

2016) from the 200 year pre-industrial experiment sample.  Also shown is the 779 

observational estimate from Middlemas and Clement (2016). 780 

 781 

  782 
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Figure 2: (a) Multi-model average of local temperature change (RCP8.5, 2010 to 2100) 783 

under RCP8.5 (K); (b) Multi-model average of regression coefficient of the 10-year 784 

running mean local temperature against the 10-year running mean tropical mean 785 

temperature, multiplied by 1 SD of DCV (unit, K). Calculations are made using 200 786 

years of the pre-industrial experiments (where available). Stippling indicates that in 787 

excess of 70% of models agree on the sign of the change (see supplementary material 788 

for discussion on choice of stippling threshold). 789 

 790 

791 

(a)

(b)
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Figure 3: SD of (a) global, and (b) tropical decadal temperature versus decadal 792 

NINO3.4 SDs.  Each point represents a CMIP5 model, and the error bars show 793 

estimated 80% confidence ranges.  Lines of best fit and explained variance are also 794 

shown from standard regression. 795 
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Figure 4: (a) Total TOA radiative feedback (W/m2/K), versus SD of global temperature 800 

(K).  (b) Tropical TOA radiative feedback versus tropical temperature SD.  Each point 801 

represents a CMIP5 model, and x and y error bars show 80% confidence on SD from 802 

the PI sampling and feedback from decadal regression respectively.  Lines of best fit 803 

and explained variance are also shown. 804 
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  808 

Figure 5: Total tropical (a) LW and (b) SW feedback (W/m2/K), plotted against SD of 809 

tropical temperature variability.  Each point represents a CMIP5 model, and the error 810 

bars show the 80% confidence limit in estimation of the feedback from standard 811 

regression. Lines of best fit and explained variance are also shown from standard 812 

regression.  813 
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Figure 6: Net SW feedback, plotted against SW cloud feedback (both W/m2/K) for the 817 

tropics.  Each point represents a CMIP5 model, and the error bars show the 80% 818 

confidence limit for standard regression.  A line of best fit is also shown, along with 819 

explained variance. 820 
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Figure 7: SW net feedback plotted against LW net feedback (a) globally, and (b) for 824 

the tropics only.  Each point represents a CMIP5 model, and the error bars show 825 

estimated 80% confidence ranges (see Methods for details).  Lines of best fit and 826 

explained variance are also shown from standard regression. 827 
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Figure 8: Scatter plots showing: (a) ΔTG (global temperature change) versus Tropical 831 

(30S-30N) temperature decadal SD; (b) Tropical temperature change, versus tropical 832 

decadal SD; (c) ΔTG, TCR versus ECS.  833 

  834 
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Figure 9: Scatter plots showing ECS versus tropical SD for (a) CMIP5; (b) CMIP3.  835 

Error bars show the 80% confidence range of SD.  Also shown are lines of best fit and 836 

explained variance from standard regression.  837 
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 851 

Stippling. Stippling in Figure 2 indicates statistical significance at the 5% level under 852 

the assumption that all models are independent (Power et al., 2012). The degree of 853 

agreement required to attain this level of statistical significance is based on the 854 

Binomial Distribution. The total number of models used, the number of models and the 855 

proportion of models (%) agreeing on sign of change indicated by stippling are  21, 15, 856 

and ≥ 71% respectively. 857 

 858 

Temperature reinforcement from decadal feedbacks. 859 

We assume a global temperature change relationship of  860 

PhC

tH
T




  861 

where H is the energy imbalance at the surface, h depth of the mixed layer, ρ the density 862 

of sea water, CP the specific heat of water and Δt the elapsed time (e.g Brown et al., 863 
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2014).  H= QTOA – QBML (bottom mixed layer), and QBML can be significant on long 864 

time scales (Deser et al., 2010), but is here assumed to be zero.   Mixed layer depth 865 

estimates vary, but were calculated as 75m with +/- 1SD of 25m (Baker and Roe, 2009) 866 

and by Geoffroy et al. (2012) of 77m for the CMIP5 model mean.  Assuming H=0.1 867 

W/m2, (from temperature excursion of 0.05K under a feedback of 2 W/m2/K), h=100m 868 

and Δt = 10y results in ΔT=0.075K. 869 
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Table S1: The 35 CMIP5 models included in this study: Model name and model host 887 

institution. Information summarized from http://cmip-888 

pcmdi.llnl.gov/cmip5/availability.html 889 

Model name(s) Model host institution(s) 

ACCESS1.0 

ACCESS1.3 

Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and Bureau of Meteorology 

BCC-CSM1-1  

BCC-CSM1-1-M 

Beijing Climate Center, China Meteorological 

Administration 

BNU-ESM College of Global Change and Earth System Science, 

Beijing Normal University 

CanESM2 Canadian Centre for Climate Modelling and Analysis 

CCSM4 National Center for Atmospheric Research 

CESM1-BGC 

CESM1-CAM5 

CESM1-FASTCHEM 

CESM1-WACCM 

National Science Foundation, Department of Energy, 

National Center for Atmospheric Research 

CMCC-CESM 

CMCC-CM 

CMCC-CMS 

Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CNRM-CMS 

CNRM-CM5 

Centre National de Recherches Meteorologiques / Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) 

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese 

Academy of Sciences; and CESS, Tsinghua University 

FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese 

Academy of Sciences 

FIO-ESM First Institute of Oceanography 

GFDL-CM3  

GFDL-ESM2G  

GFDL-ESM2M  

Geophysical Fluid Dynamics Laboratory 

GISS-E2-H 

GISS-E2-R 

NASA Goddard Institute for Space Studies 

HadGEM2-CC  

HadGEM2-ES 

Met Office Hadley Centre 

INM-CM4 Institute of Numerical Mathematics, Russian Academy of 

Sciences 

IPSL-CM5A-LR  

IPSL-CM5A-MR  

Institut Pierre-Simon Laplace 
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IPSL-CM5B-LR 

MIROC4h  

MIROC5 

Atmosphere and Ocean Research Institute (The University 

of Tokyo), National Institute for Environmental Studies, 

and Japan Agency for Marine-Earth Science and 

Technology 

MIROC-ESM  

MIROC-ESM-CHEM 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University 

of Tokyo), and National Institute for Environmental 

Studies 

MPI-ESM-LR 

MPI-ESM-MR  

MPI-ESM-P 

Max Planck Institute for Meteorology (MPI-M) 

MRI-CGCM3 Meteorological Research Institute 

NorESM1-M 

NorESM1-ME  

Norwegian Climate Centre 

 890 

  891 
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Table S2: The 18 CMIP3 models included in this study (see http://www-892 

pcmdi.llnl.gov/ipcc/about_ipcc.php) 893 

bccr_bcm2_0,  Bjerknes Centre for Climate Research 

cccma_cgcm3_1 

cccma_cgcm3_1_t63 

Canadian Centre for Climate Modelling and Analysis 

 

 

cnrm_cm3 Météo-France / Centre National de Recherches Météorologiques 

csiro_mk3_0 

csiro_mk3_5 

Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) 

gfdl_cm2_0 

gfdl_cm2_1 

Geophysical Fluid Dynamics Laboratory 

giss_aom 

giss_model_e_h 

giss_model_e_r 

NASA Goddard Institute for Space Studies 

iap_fgoals1_0_g LASG / Institute of Atmospheric Physics 

ingv_echam4 Instituto Nazionale di Geofisica e Vulcanologia 

inmcm3_0 Institute for Numerical Mathematics 

ipsl_cm4 Institut Pierre-Simon Laplace 

miroc3_2_hires 

miroc3_2_medres 

Center for Climate System Research (The University of Tokyo), 

National Institute for Environmental Studies, and Frontier Research 

Center for Global Change (JAMSTEC) 

miub_echo_g Meteorological Institute of the University of Bonn, Meteorological 

Research Institute of KMA, and Model and Data group 

mpi_echam5 Max Planck Institute for Meteorology 

mri_cgcm2_3_2a Meteorological Research Institute 
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ncar_ccsm3_0 

ncar_pcm1 

National Center for Atmospheric Research 

ukmo_hadcm3  

ukmo_hadgem1 

Met Office Hadley Centre 

 894 

  895 



 49 

Figure S1: Example of (a) LW, (b) SW and (c) total global mean TOA radiation as a 896 

function of decadal global mean temperature for model ACCESS1.0.   Individual 897 

months (blue diamonds) and annual means (black diamonds) are shown.  Linear 898 

regression equations and explained variance on the annual means are also shown from 899 

standard regression.  In (c), the red line shows the expected relationship if only Planck 900 

cooling were to operate. 901 
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